[1]
|
Acciaio, B, Beiglböck, M, Penkner, F, Schachermayer, W:A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance 26(2), 233-251 (2016). doi:10.1111/mafi.12060
|
[2]
|
Alvarez, A, Ferrando, S, Olivares, P:Arbitrage and hedging in a non probabilistic framework. Math.Financ. Econ 7(1), 1-28 (2013). doi:10.1007/s11579-012-0074-5
|
[3]
|
Bender, C, Sottinen, T, Valkeila, E:Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch 12(4), 441-468 (2008). doi:10.1007/s00780-008-0074-8
|
[4]
|
Biagini, S, Bouchard, B, Kardaras, C, Nutz, M:Robust fundamental theorem for continuous processes.Mathematical Finance (2015). doi:10.1111/mafi.12110
|
[5]
|
Bick, A, Willinger, W:Dynamic spanning without probabilities. Stochastic Process. Appl 50(2), 349-374(1994). doi:10.1016/0304-4149(94)90128-7
|
[6]
|
Bouchard, B, Nutz, M:Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab 25(2), 823-859 (2015). doi:10.1214/14-AAP1011
|
[7]
|
Cont, R, Fournié, D-A:Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal 259(4), 1043-1072 (2010). doi:10.1016/j.jfa.2010.04.017
|
[8]
|
Davis, M, Obłój, J, Raval, V:Arbitrage bounds for prices of weighted variance swaps. Math. Finance 24(4), 821-854 (2014). doi:10.1111/mafi.12021
|
[9]
|
Dudley, RM:Wiener functionals as Itô integrals. Ann. Probability 5(1), 140-141 (1977)
|
[10]
|
Dupire, B:Pricing and hedging with smiles. Mathematics of Derivative Securities (Cambridge, 1995), Publ. Newton Inst, vol. 15, pp. 103-111. Cambridge Univ. Press, Cambridge (1997)
|
[11]
|
Dupire, B:Functional Itô calculus. Bloomberg Portfolio Research Paper (2009)
|
[12]
|
El Karoui, N, Jeanblanc-Picqué, M, Shreve, SE:Robustness of the Black and Scholes formula. Math. Finance 8(2), 93-126 (1998). doi:10.1111/1467-9965.00047
|
[13]
|
Föllmer, H:Calcul d'Itô sans probabilités. Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980), Lecture Notes in Math, vol. 850, pp. 143-150. Springer, Berlin (1981)
|
[14]
|
Föllmer, H:Probabilistic aspects of financial risk. European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math, vol. 201, pp. 21-36. Birkhäuser, Basel (2001)
|
[15]
|
Föllmer, H, Schied, A Stochastic Finance. An Introduction in Discrete Time, 3rd edn., p. 544.
|
[16]
|
Freedman, D Brownian Motion and Diffusion, 2nd edn., p. 231. Springer, New York (1983)
|
[17]
|
Hobson, DG:Robust hedging of the lookback option. Finance Stoch 2(4), 329-347 (1998)
|
[18]
|
Janson, S, Tysk, J:Preservation of convexity of solutions to parabolic equations. J. Differential Equations 206(1), 182-226 (2004). doi:10.1016/j.jde.2004.07.016
|
[19]
|
Ji, S, Yang, S:Classical solutions of path-dependent PDEs and functional forward-backward stochastic systems. Math. Probl. Eng, 423101-11 (2013). downloads.hindawi.com/journals/mpe/2013/423101.pdf
|
[20]
|
Lyons, TJ:Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2(2), 117-133 (1995)
|
[21]
|
Peng, S, Wang, F:BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. F. Sci. China Math 59, 19 (2016). doi:10.1007/s11425-015-5086-1
|
[22]
|
Riedel, F:Financial economics without probabilistic prior assumptions. Decisions Econ. Finan 38, 75-91(2015). doi:10.1007/s10203-014-0159-0
|
[23]
|
Schied, A:Model-free CPPI. J. Econom. Dynam. Control 40, 84-94 (2014). doi:10.1016/j.jedc.2013.12.010
|
[24]
|
Schied, A:On a class of generalized Takagi functions with linear pathwise quadratic variation. J. Math.Anal. Appl 433, 974-990 (2016)
|
[25]
|
Schied, A, Stadje, M:Robustness of delta hedging for path-dependent options in local volatility models.J. Appl. Probab 44(4), 865-879 (2007). doi:10.1239/jap/1197908810
|
[26]
|
Schied, A, Speiser, L, Voloshchenko, I:Model-free portfolio theory and its functional master formula(2016). arXiv preprint 1606.03325
|
[27]
|
Sondermann, D:Introduction to Stochastic Calculus for Finance. Lecture Notes in Economics and Mathematical Systems, vol. 579, p. 136. Springer, Berlin (2006)
|
[28]
|
Stroock, DW, Varadhan, SRS:Diffusion processes with continuous coefficients. Comm. Pure Appl. Math 22, 345-400479530 (1969)
|
[29]
|
Stroock, DW, Varadhan, SRS:On the support of diffusion processes with applications to the strong maximum principle. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III:Probability theory, pp. 333-359. Univ. California Press, Berkeley, Calif (1972)
|
[30]
|
Vovk, V:Rough paths in idealized financial markets. Lith. Math. J 51(2), 274-285 (2011).doi:10.1007/s10986-011-9125-5
|
[31]
|
Vovk, V:Continuous-time trading and the emergence of probability. Finance Stoch 16(4), 561-609 (2012). doi:10.1007/s00780-012-0180-5
|
[32]
|
Vovk, V:Itô calculus without probability in idealized financial markets. Lith. Math. J 55(2), 270-290 (2015). doi:10.1007/s10986-015-9280-1
|
[33]
|
Widder, DV:The Heat Equation. Pure and Applied Mathematics, vol. 67, pp. 267, New York and London(1975)
|