-
Previous Article
Editorial
- PUQR Home
- This Issue
-
Next Article
Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications
Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs
1 ETH Department of Mathematics, Zurich, Switzerland; |
2 University of Southern California, Department of Mathematics, Los Angeles, California, USA |
References:
[1] |
Barles, G, Buckdahn, R, Pardoux, E:Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep 60, 57-83 (1997) |
[2] |
Bayraktar, E, Yao, S:Optimal Stopping with Random Maturity under Nonlinear Expectations. preprint(2016). arXiv:1505.07533 |
[3] |
Cont, R, Fournie, D:Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab 41, 109-133 (2013) |
[4] |
Cosso, A, Russo, F:Strong-viscosity solutions:Semilinear parabolic PDEs and path-dependent PDEs.preprint (2016). arXiv:1505.02927 |
[5] |
Crandall, MG, Ishii, H, Lions, P-L:User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (NS) 27, 1-67 (1992) |
[6] | |
[7] |
Ekren, I, Keller, C, Touzi, N, Zhang, J:On Viscosity Solutions of Path Dependent PDEs. Ann. Probab 42, 204-236 (2014a) |
[8] |
Ekren, I, Touzi, N, Zhang, J:Optimal Stopping under Nonlinear Expectation. Stochastic Process. Appl 124, 3277-3311 (2014b) |
[9] |
Ekren, I, Touzi, N, Zhang, J:Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part I. Ann. Probab 44, 1212-1253 (2016a) |
[10] |
Ekren, I, Touzi, N, Zhang, J:Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part II. Ann. Probab 44, 2507-2553 (2016b) |
[11] |
Fleming, W, Soner, HM Controlled Markov Processes and Viscosity Solutions, 2nd ed. Springer, New York (2006) |
[12] |
Fleming, W, Souganidis, PE:On The Existence of Value Functions of Two-Player, Zero-Sum Stochastic Differential Games. Indiana Univ. Math. J 38, 293-314 (1989) |
[13] |
Mikulevicious, R:On the convergence of diffusions, Stochastic Differential Systems, pp. 176-186.Springer-Verlag, Berlin (1987) |
[14] |
Mikulevicius, R, Rozovskii, B:Martingale problems for stochastic PDE's. Stochastic partial differential equations:six perspectives, pp. 243-325 (1999). Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI Peng, S:Stochastic Hamilton-Jacobi-Bellman Equations. SIAM J. Control Optim 30, 284-304 (1992) |
[15] |
Peng, S:Open problems on backward stochastic differential equations. Control of distributed parameter and stochastic systems, pp. 265-273. Springer, US (1999) |
[16] |
Peng, S:Backward stochastic differential equation, nonlinear expectation and their applications. Proceedings of the International Congress of Mathematicians, Hyderabad, India (2010) |
[17] |
Peng, S:Note on Viscosity Solution of Path-Dependent PDE and G-Martingales. preprint, arXiv:1106.1144 (2011) |
[18] |
Peng, S, Song, Y:G-Expectation Weighted Sobolev Spaces, Backward SDE and Path Dependent PDE. J.Math. Soc. Japan 67, 1725-1757 (2015) |
[19] |
Peng, S, Wang, F:BSDE, Path-dependent PDE and Nonlinear Feynman-Kac Formula. Sci. China Math 59, 19-36 (2016) |
[20] |
Pham, T, Zhang, J:Some Norm Estimates for Semimartingales. Electron. J. Probab 18, 1-25 (2013) |
[21] |
Pham, T, Zhang, J:Two Person Zero-sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation. SIAM J. Control Optim 52, 2090-2121 (2014) |
[22] |
Qiu, J:Weak Solution for a Class of Fully Nonlinear Stochastic Hamilton-Jacobi-Bellman Equations.preprint (2016). arXiv:1410.6967 |
[23] |
Ren, Z:Perron's method for viscosity solutions of semilinear path dependent PDEs, Stochastics:An International Journal of Probability and Stochastic Processes (2016) |
[24] |
Ren, Z, Touzi, N, Zhang, J:An Overview of Viscosity Solutions of Path-Dependent PDEs. Stochastic Anal. Appl 100, 397-453 (2014) |
[25] |
Ren, Z, Touzi, N, Zhang, J:Comparison of Viscosity Solutions of Semilinear Path-Dependent PDEs, preprint (2016a). arXiv:1410.7281 |
[26] |
Ren, Z, Touzi, N, Zhang, J:Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-dependent PDEs, preprint (2016b). arXiv:1511.05910 |
show all references
References:
[1] |
Barles, G, Buckdahn, R, Pardoux, E:Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep 60, 57-83 (1997) |
[2] |
Bayraktar, E, Yao, S:Optimal Stopping with Random Maturity under Nonlinear Expectations. preprint(2016). arXiv:1505.07533 |
[3] |
Cont, R, Fournie, D:Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab 41, 109-133 (2013) |
[4] |
Cosso, A, Russo, F:Strong-viscosity solutions:Semilinear parabolic PDEs and path-dependent PDEs.preprint (2016). arXiv:1505.02927 |
[5] |
Crandall, MG, Ishii, H, Lions, P-L:User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (NS) 27, 1-67 (1992) |
[6] | |
[7] |
Ekren, I, Keller, C, Touzi, N, Zhang, J:On Viscosity Solutions of Path Dependent PDEs. Ann. Probab 42, 204-236 (2014a) |
[8] |
Ekren, I, Touzi, N, Zhang, J:Optimal Stopping under Nonlinear Expectation. Stochastic Process. Appl 124, 3277-3311 (2014b) |
[9] |
Ekren, I, Touzi, N, Zhang, J:Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part I. Ann. Probab 44, 1212-1253 (2016a) |
[10] |
Ekren, I, Touzi, N, Zhang, J:Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part II. Ann. Probab 44, 2507-2553 (2016b) |
[11] |
Fleming, W, Soner, HM Controlled Markov Processes and Viscosity Solutions, 2nd ed. Springer, New York (2006) |
[12] |
Fleming, W, Souganidis, PE:On The Existence of Value Functions of Two-Player, Zero-Sum Stochastic Differential Games. Indiana Univ. Math. J 38, 293-314 (1989) |
[13] |
Mikulevicious, R:On the convergence of diffusions, Stochastic Differential Systems, pp. 176-186.Springer-Verlag, Berlin (1987) |
[14] |
Mikulevicius, R, Rozovskii, B:Martingale problems for stochastic PDE's. Stochastic partial differential equations:six perspectives, pp. 243-325 (1999). Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI Peng, S:Stochastic Hamilton-Jacobi-Bellman Equations. SIAM J. Control Optim 30, 284-304 (1992) |
[15] |
Peng, S:Open problems on backward stochastic differential equations. Control of distributed parameter and stochastic systems, pp. 265-273. Springer, US (1999) |
[16] |
Peng, S:Backward stochastic differential equation, nonlinear expectation and their applications. Proceedings of the International Congress of Mathematicians, Hyderabad, India (2010) |
[17] |
Peng, S:Note on Viscosity Solution of Path-Dependent PDE and G-Martingales. preprint, arXiv:1106.1144 (2011) |
[18] |
Peng, S, Song, Y:G-Expectation Weighted Sobolev Spaces, Backward SDE and Path Dependent PDE. J.Math. Soc. Japan 67, 1725-1757 (2015) |
[19] |
Peng, S, Wang, F:BSDE, Path-dependent PDE and Nonlinear Feynman-Kac Formula. Sci. China Math 59, 19-36 (2016) |
[20] |
Pham, T, Zhang, J:Some Norm Estimates for Semimartingales. Electron. J. Probab 18, 1-25 (2013) |
[21] |
Pham, T, Zhang, J:Two Person Zero-sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation. SIAM J. Control Optim 52, 2090-2121 (2014) |
[22] |
Qiu, J:Weak Solution for a Class of Fully Nonlinear Stochastic Hamilton-Jacobi-Bellman Equations.preprint (2016). arXiv:1410.6967 |
[23] |
Ren, Z:Perron's method for viscosity solutions of semilinear path dependent PDEs, Stochastics:An International Journal of Probability and Stochastic Processes (2016) |
[24] |
Ren, Z, Touzi, N, Zhang, J:An Overview of Viscosity Solutions of Path-Dependent PDEs. Stochastic Anal. Appl 100, 397-453 (2014) |
[25] |
Ren, Z, Touzi, N, Zhang, J:Comparison of Viscosity Solutions of Semilinear Path-Dependent PDEs, preprint (2016a). arXiv:1410.7281 |
[26] |
Ren, Z, Touzi, N, Zhang, J:Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-dependent PDEs, preprint (2016b). arXiv:1511.05910 |
[1] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[2] |
Ludger Overbeck, Jasmin A. L. Röder. Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 4-. doi: 10.1186/s41546-018-0030-2 |
[3] |
N. V. Krylov. Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2495-2516. doi: 10.3934/cpaa.2018119 |
[4] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[5] |
Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8 |
[6] |
Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053 |
[7] |
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897 |
[8] |
Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725 |
[9] |
Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897 |
[10] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[11] |
Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125 |
[12] |
Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907 |
[13] |
Monica Motta, Caterina Sartori. Uniqueness of solutions for second order Bellman-Isaacs equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 739-765. doi: 10.3934/dcds.2008.20.739 |
[14] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[15] |
Martino Bardi, Gabriele Terrone. On the homogenization of some non-coercive Hamilton--Jacobi--Isaacs equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 207-236. doi: 10.3934/cpaa.2013.12.207 |
[16] |
David Cheban, Zhenxin Liu. Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29 (4) : 2791-2817. doi: 10.3934/era.2021014 |
[17] |
Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507 |
[18] |
Huijie Qiao, Jiang-Lun Wu. On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1449-1467. doi: 10.3934/dcdsb.2018215 |
[19] |
Huijie Qiao, Jiang-Lun Wu. Path independence of the additive functionals for stochastic differential equations driven by G-lévy processes. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022007 |
[20] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]