
Previous Article
A brief history of quantitative finance
 PUQR Home
 This Issue

Next Article
Measure distorted arrival rate risks and their rewards
Credit, funding, margin, and capital valuation adjustments for bilateral portfolios
1 IMEX, London, UK; 
2 CASS School of Business, London, UK; 
3 LaMME, Univ Evry, CNRS, Université ParisSaclay, 91037, Evry, France 
References:
[1] 
Albanese, C, Andersen, L:Accounting for OTC derivatives:Funding adjustments and the rehypothecation option (2014). ssrn:2482955 
[2] 
Albanese, C, Andersen, L, Iabichino, S:FVA:Accounting and risk management (2015). Risk Magazine, February 6468 
[3] 
Albanese, C, Bellaj, T, Gimonet, G:Pietronero G:Coherent global market simulations and securitization measures for counterparty credit risk. Quant Finance. 11(1), 120 (2011) 
[4] 
Albanese, C, Brigo, D, Oertel, F:Restructuring counterparty credit risk. Int. J. Theor. Appl. Finance. 16(2), 1350010 (29 pages) (2013) 
[5] 
Albanese, C, Crépey, S:XVA analysis from the balance sheet (2017). Working paper available at https://math.maths.univevry.fr/crepey. Accessed 7 June 2017 
[6] 
Andersen, L, Duffie, D, Song, Y:Funding value adjustments (2016). ssrn.2746010 
[7] 
Armenti, Y, Crépey, S:Central clearing valuation adjustment. SIAM J. Financial Math. 8, 274313(2017a) 
[8] 
Armenti, Y, Crépey, S:XVA Metrics for CCP optimisation (2017b). Working paper available at https://math.maths.univevry.fr/crepey. Accessed 13 June 2017 
[9] 
Bichuch, M, Capponi, A, Sturm, S:Arbitragefree XVA. Mathematical Finance (2016). Forthcoming(preprint version available at ssrn.2820257) 
[10] 
Bielecki, T, Rutkowski, M:Credit risk modelling:Intensity based approach. In:Jouini, E, Cvitanic, J, Musiela, M (eds.) Handbook in Mathematical Finance:Option Pricing, Interest Rates and Risk Management, pp. 399457. Cambridge University Press, Cambridge (2001) 
[11] 
Bielecki, T, Rutkowski, M:Credit Risk:Modeling, Valuation and Hedging. Springer Finance, Berlin(2002) 
[12] 
Bielecki, TR, Rutkowski, M:Valuation and hedging of contracts with funding costs and collateralization.SIAM J. Financial Math. 6, 594655 (2015) 
[13] 
Brigo, D, Capponi, A:Bilateral counterparty risk with application to CDSs (2008). arXiv:0812.3705, short version published later in 2010 in Risk Magazine Brigo, D, Pallavicini, A:Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and wrongway risks. J. Financial Eng. 1, 160 (2014) 
[14] 
Burgard, C, Kjaer, M:Funding Strategies, Funding Costs. Risk Magazine, December, 8287 (2013) 
[15] 
CollinDufresne, P, Goldstein, R, Hugonnier, J:A general formula for valuing defaultable securities.Econometrica. 72(5), 13771407 (2004) 
[16] 
Crépey, S:Bilateral counterparty risk under funding constraints. Part I:Pricing, followed by Part II:CVA. Math. Finance. 25(1), 150 (2015). First published online on 12 December 2012 
[17] 
Crépey, S, Élie, R, Sabbagh, W:When capital is a funding source:The XVA Anticipated BSDEs (2017). Working paper available at https://math.maths.univevry.fr/crepey 
[18] 
Crépey, S, Song, S:Counterparty risk and funding:Immersion and beyond. Finance Stochast. 20(4), 901930 (2016) 
[19] 
Duffie, D, Huang, M:Swap rates and credit quality. J. Finance. 51, 921950 (1996) 
[20] 
Duffie, D, Schroder, M, Skiadas, C:Recursive valuation of defaultable securities and the timing of resolution of uncertainty. Ann. Appl. Probab. 6(4), 10751090 (1996) 
[21] 
Kruse, T, Popier, A:BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics:Int. J. Probab. Stochast. Process. 88(4), 491539 (2016) 
[22] 
Piterbarg, V:Funding beyond discounting:collateral agreements and derivatives pricing. Risk Mag. 2, 97102 (2010) 
[23] 
Pykhtin, M:Model foundations of the Basel III standardised CVA charge. Risk Magazine (2012) 
show all references
References:
[1] 
Albanese, C, Andersen, L:Accounting for OTC derivatives:Funding adjustments and the rehypothecation option (2014). ssrn:2482955 
[2] 
Albanese, C, Andersen, L, Iabichino, S:FVA:Accounting and risk management (2015). Risk Magazine, February 6468 
[3] 
Albanese, C, Bellaj, T, Gimonet, G:Pietronero G:Coherent global market simulations and securitization measures for counterparty credit risk. Quant Finance. 11(1), 120 (2011) 
[4] 
Albanese, C, Brigo, D, Oertel, F:Restructuring counterparty credit risk. Int. J. Theor. Appl. Finance. 16(2), 1350010 (29 pages) (2013) 
[5] 
Albanese, C, Crépey, S:XVA analysis from the balance sheet (2017). Working paper available at https://math.maths.univevry.fr/crepey. Accessed 7 June 2017 
[6] 
Andersen, L, Duffie, D, Song, Y:Funding value adjustments (2016). ssrn.2746010 
[7] 
Armenti, Y, Crépey, S:Central clearing valuation adjustment. SIAM J. Financial Math. 8, 274313(2017a) 
[8] 
Armenti, Y, Crépey, S:XVA Metrics for CCP optimisation (2017b). Working paper available at https://math.maths.univevry.fr/crepey. Accessed 13 June 2017 
[9] 
Bichuch, M, Capponi, A, Sturm, S:Arbitragefree XVA. Mathematical Finance (2016). Forthcoming(preprint version available at ssrn.2820257) 
[10] 
Bielecki, T, Rutkowski, M:Credit risk modelling:Intensity based approach. In:Jouini, E, Cvitanic, J, Musiela, M (eds.) Handbook in Mathematical Finance:Option Pricing, Interest Rates and Risk Management, pp. 399457. Cambridge University Press, Cambridge (2001) 
[11] 
Bielecki, T, Rutkowski, M:Credit Risk:Modeling, Valuation and Hedging. Springer Finance, Berlin(2002) 
[12] 
Bielecki, TR, Rutkowski, M:Valuation and hedging of contracts with funding costs and collateralization.SIAM J. Financial Math. 6, 594655 (2015) 
[13] 
Brigo, D, Capponi, A:Bilateral counterparty risk with application to CDSs (2008). arXiv:0812.3705, short version published later in 2010 in Risk Magazine Brigo, D, Pallavicini, A:Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and wrongway risks. J. Financial Eng. 1, 160 (2014) 
[14] 
Burgard, C, Kjaer, M:Funding Strategies, Funding Costs. Risk Magazine, December, 8287 (2013) 
[15] 
CollinDufresne, P, Goldstein, R, Hugonnier, J:A general formula for valuing defaultable securities.Econometrica. 72(5), 13771407 (2004) 
[16] 
Crépey, S:Bilateral counterparty risk under funding constraints. Part I:Pricing, followed by Part II:CVA. Math. Finance. 25(1), 150 (2015). First published online on 12 December 2012 
[17] 
Crépey, S, Élie, R, Sabbagh, W:When capital is a funding source:The XVA Anticipated BSDEs (2017). Working paper available at https://math.maths.univevry.fr/crepey 
[18] 
Crépey, S, Song, S:Counterparty risk and funding:Immersion and beyond. Finance Stochast. 20(4), 901930 (2016) 
[19] 
Duffie, D, Huang, M:Swap rates and credit quality. J. Finance. 51, 921950 (1996) 
[20] 
Duffie, D, Schroder, M, Skiadas, C:Recursive valuation of defaultable securities and the timing of resolution of uncertainty. Ann. Appl. Probab. 6(4), 10751090 (1996) 
[21] 
Kruse, T, Popier, A:BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics:Int. J. Probab. Stochast. Process. 88(4), 491539 (2016) 
[22] 
Piterbarg, V:Funding beyond discounting:collateral agreements and derivatives pricing. Risk Mag. 2, 97102 (2010) 
[23] 
Pykhtin, M:Model foundations of the Basel III standardised CVA charge. Risk Magazine (2012) 
[1] 
Lijun Bo. Portfolio optimization of credit swap under funding costs. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 12. doi: 10.1186/s4154601700236 
[2] 
Xiaohu Qian, Min Huang, WaiKi Ching, Loo Hay Lee, Xingwei Wang. Mechanism design in project procurement auctions with cost uncertainty and failure risk. Journal of Industrial and Management Optimization, 2019, 15 (1) : 131157. doi: 10.3934/jimo.2018036 
[3] 
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of tradecredit policy. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 169191. doi: 10.3934/naco.2018010 
[4] 
R. Enkhbat , N. Tungalag, A. S. Strekalovsky. Pseudoconvexity properties of average cost functions. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 233236. doi: 10.3934/naco.2015.5.233 
[5] 
Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 13011317. doi: 10.3934/dcds.2014.34.1301 
[6] 
Chandan Pal, Somnath Pradhan. Zerosum games for pure jump processes with risksensitive discounted cost criteria. Journal of Dynamics and Games, 2022, 9 (1) : 1325. doi: 10.3934/jdg.2021020 
[7] 
Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete and Continuous Dynamical Systems  B, 2019, 24 (5) : 20932124. doi: 10.3934/dcdsb.2019086 
[8] 
Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 39053928. doi: 10.3934/dcdsb.2018336 
[9] 
Tai Chiu Edwin Cheng, Bertrand MiaoTsong Lin, HsiaoLan Huang. Talent hold cost minimization in film production. Journal of Industrial and Management Optimization, 2017, 13 (1) : 223235. doi: 10.3934/jimo.2016013 
[10] 
Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete and Continuous Dynamical Systems  B, 2017, 22 (7) : 29392969. doi: 10.3934/dcdsb.2017158 
[11] 
Fan Sha, Deren Han, Weijun Zhong. Bounds on price of anarchy on linear cost functions. Journal of Industrial and Management Optimization, 2015, 11 (4) : 11651173. doi: 10.3934/jimo.2015.11.1165 
[12] 
Wei Xu, Liying Yu, GuiHua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial and Management Optimization, 2020, 16 (5) : 25312549. doi: 10.3934/jimo.2019068 
[13] 
Ş. İlker Birbil, Kerem Bülbül, J. B. G. Frenk, H. M. Mulder. On EOQ cost models with arbitrary purchase and transportation costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 12111245. doi: 10.3934/jimo.2015.11.1211 
[14] 
Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial and Management Optimization, 2022, 18 (2) : 873896. doi: 10.3934/jimo.2021001 
[15] 
Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 339364. doi: 10.3934/naco.2016016 
[16] 
Weidong Bao, Wenhua Xiao, Haoran Ji, Chao Chen, Xiaomin Zhu, Jianhong Wu. Towards big data processing in clouds: An online costminimization approach. Big Data & Information Analytics, 2016, 1 (1) : 1529. doi: 10.3934/bdia.2016.1.15 
[17] 
Brahim El Asri, Sehail Mazid. Stochastic impulse control Problem with state and time dependent cost functions. Mathematical Control and Related Fields, 2020, 10 (4) : 855875. doi: 10.3934/mcrf.2020022 
[18] 
Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. The cost of controlling weakly degenerate parabolic equations by boundary controls. Mathematical Control and Related Fields, 2017, 7 (2) : 171211. doi: 10.3934/mcrf.2017006 
[19] 
Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial and Management Optimization, 2012, 8 (1) : 1940. doi: 10.3934/jimo.2012.8.19 
[20] 
Lihui Zhang, Xin Zou, Jianxun Qi. A tradeoff between time and cost in scheduling repetitive construction projects. Journal of Industrial and Management Optimization, 2015, 11 (4) : 14231434. doi: 10.3934/jimo.2015.11.1423 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]