-
Previous Article
Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
- PUQR Home
- This Issue
-
Next Article
The Cauchy problem of Backward Stochastic Super-Parabolic Equations with Quadratic Growth
Piecewise constant martingales and lazy clocks
1. Université d'Évry, France; |
2. Louvain Finance Center(LFIN) and Center for Operations Research and Econometrics(CORE), Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium |
References:
show all references
References:
[1] |
Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 |
[2] |
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047 |
[3] |
Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
[4] |
Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations and Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355 |
[5] |
Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193 |
[6] |
T. Tachim Medjo. On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021282 |
[7] |
Xia Li, Chuntian Wang, Hao Li, Andrea L. Bertozzi. A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies. Networks and Heterogeneous Media, 2022, 17 (3) : 311-331. doi: 10.3934/nhm.2022009 |
[8] |
Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011 |
[9] |
Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065 |
[10] |
Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090 |
[11] |
Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581 |
[12] |
Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184 |
[13] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1689-1707. doi: 10.3934/jimo.2021039 |
[14] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[15] |
Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197 |
[16] |
Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025 |
[17] |
Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105 |
[18] |
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 |
[19] |
Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156 |
[20] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]