Advanced Search
Article Contents
Article Contents

Nonlinear regression without i.i.d. assumption

Abstract Related Papers Cited by
  • In this paper, we consider a class of nonlinear regression problems without the assumption of being independent and identically distributed. We propose a correspondent mini-max problem for nonlinear regression and give a numerical algorithm. Such an algorithm can be applied in regression and machine learning problems, and yields better results than traditional least squares and machine learning methods.


    \begin{equation} \\ \end{equation}
  • [1]

    Ben-Israel, A. and T.N.E. Greville. (2003). Generalized inverses:Theory and applications (2nd ed.), Springer, New York.


    Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. (2010). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn. 3, 1-122.


    Boyd, S. and L. Vandenberghe. (2004). Convex Optimization, Cambridge University Press. https://doi.org/10.1017/cbo9780511804441.005.


    Demyanov, V.F. and V.N. Malozemov. (1977). Introduction to Minimax, Wiley, New York.


    Jin, H. and S. Peng. (2016). Optimal Unbiased Estimation for Maximal Distribution. https://arxiv.org/abs/1611.07994.


    Kellogg, R.B. (1969). Nonlinear alternating direction algorithm, Math. Comp. 23, 23-38.


    Kendall, M.G. and A. Stuart. (1968). The Advanced Theory of Statistics, Volume 3:Design and Analysis, and Time-Series (2nd ed.), Griffin, London.


    Kiwiel, K.C. (1987). A Direct Method of Linearization for Continuous Minimax Problems, J. Optim. Theory Appl. 55, 271-287.


    Klessig, R. and E. Polak. (1973). An Adaptive Precision Gradient Method for Optimal Control, SIAM J. Control 11, 80-93.


    Legendre, A.-M. (1805). Nouvelles methodes pour la determination des orbites des cometes, F. Didot, Paris.


    Lin, L., Y. Shi, X. Wang, and S. Yang. (2016). k-sample upper expectation linear regression-Modeling, identifiability, estimation and prediction, J. Stat. Plan. Infer. 170, 15-26.


    Lin, L., P. Dong, Y. Song, and L. Zhu. (2017a). Upper Expectation Parametric Regression, Stat. Sin. 27, 1265-1280.


    Lin, L., Y.X. Liu, and C. Lin. (2017b). Mini-max-risk and mini-mean-risk inferences for a partially piecewise regression, Statistics 51, 745-765.


    Nocedal, J. and S.J. Wright. (2006). Numerical Optimization, Second Edition, Springer, New York.


    Panin, V.M. (1981). Linearization Method for Continuous Min-max Problems, Kibernetika 2, 75-78.


    Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B, no. 2, 159-184.


    Seber, G.A.F. and C.J. Wild. (1989). Nonlinear Regression, Wiley, New York.

  • 加载中

Article Metrics

HTML views(654) PDF downloads(51) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint