• Previous Article
    Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting
  • PUQR Home
  • This Issue
  • Next Article
    Upper risk bounds in internal factor models with constrained specification sets
January  2020, 5: 2 doi: 10.1186/s41546-020-00044-z

Moderate deviation for maximum likelihood estimators from single server queues

P. G. Department of Statistics, Sambalpur University, Odisha, India

Received  February 26, 2019 Published  March 2020

Consider a single server queueing model which is observed over a continuous time interval (0,T], where T is determined by a suitable stopping rule. Let θ be the unknown parameter for the arrival process and $\hat {\theta }_{T}$ be the maximum likelihood estimator of θ. The main goal of this paper is to obtain a moderate deviation result of the maximum likelihood estimator for the single server queueing model under certain regular conditions.
Citation: Saroja Kumar Singh. Moderate deviation for maximum likelihood estimators from single server queues. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 2-. doi: 10.1186/s41546-020-00044-z
References:
[1]

Acharya, S.K. (1999). On normal approximation for Maximum likelihood estimation from single server queues, Queueing Syst. 31, 207–216.

[2]

Acharya, S.K. and S.K. Singh. (2019). Asymptotic properties of maximum likelihood estimators from single server queues: A martingale approach, Commun. Stat. Theory Methods 48, 3549–3557.

[3]

Basawa, I.V. and N.U. Prabhu. (1981). Estimation in single server queues, Naval. Res. Logist. Quart. 28, 475–487.

[4]

Basawa, I.V. and N.U. Prabhu. (1988). Large sample inference from single server queues, Queueing Syst. 3, 289–304.

[5]

Billingsley, P. (1961). Statistical Inference for Markov Processes, The University of Chicago Press, Chicago.

[6]

Clarke, A.B. (1957). Maximum likelihood estimates in a simple queue, Ann. Math. Statist 28, 1036–1040.

[7]

Cox, D.R. (1965). Some problems of statistical analysis connected with congestion (W.L. Smith and W. B. Wilkinson, eds.), University of North Carolina Press, Chapel Hill.

[8]

Dembo, A. and O. Zeitouni. (1998). Large deviation Techniques and Applications, 2nd edn, Springer, New York.

[9]

Ellis, R.S. (1984). Large deviations for a general class of random vectors, Ann. Probab. 12, 1–12.

[10]

Gärtner, J. (1977). On large deviations from the invariant measure, Theory Probab. Appl. 22, 24–39.

[11]

Gao, F. (2001). Moderate deviations for the maximum likelihood estimator, Stat. Probab. Lett. 55, 345– 352.

[12]

Goyal, T.L. and C.M. Harris. (1972). Maximum likelihood estimation for queues with state dependent service, Sankhya Ser. A 34, 65–80.

[13]

Hall, P. and C.C. Heyde. (1980). Martingale Limit Theory and Applications, Academic Press, New York.

[14]

Miao, Y. and Y.-X. Chen. (2010). Note on moderate deviations for the maximum likelihood estimator, Acta Appl. Math. 110, 863–869.

[15]

Miao, Y. and Y. Wang. (2014). Moderate deviation principle for maximum likelihood estimator, Statistics 48, 766–777.

[16]

Singh, S.K. and S.K. Acharya. (2019). Equivalence between Bayes and the maximum likelihood estimator in M/M/1 queue, Commun. Stat.–Theory Methods 48, 4780–4793.

[17]

Wolff, R.W. (1965). Problems of statistical inference for birth and death queueing models, Oper. Res. 13, 243–357.

[18]

Xiao, Z. and L. Liu. (2006). Moderate deviations of maximum likelihood estimator for independent not identically distributed case, Stat. Probab. Lett. 76, 1056–1064.

show all references

References:
[1]

Acharya, S.K. (1999). On normal approximation for Maximum likelihood estimation from single server queues, Queueing Syst. 31, 207–216.

[2]

Acharya, S.K. and S.K. Singh. (2019). Asymptotic properties of maximum likelihood estimators from single server queues: A martingale approach, Commun. Stat. Theory Methods 48, 3549–3557.

[3]

Basawa, I.V. and N.U. Prabhu. (1981). Estimation in single server queues, Naval. Res. Logist. Quart. 28, 475–487.

[4]

Basawa, I.V. and N.U. Prabhu. (1988). Large sample inference from single server queues, Queueing Syst. 3, 289–304.

[5]

Billingsley, P. (1961). Statistical Inference for Markov Processes, The University of Chicago Press, Chicago.

[6]

Clarke, A.B. (1957). Maximum likelihood estimates in a simple queue, Ann. Math. Statist 28, 1036–1040.

[7]

Cox, D.R. (1965). Some problems of statistical analysis connected with congestion (W.L. Smith and W. B. Wilkinson, eds.), University of North Carolina Press, Chapel Hill.

[8]

Dembo, A. and O. Zeitouni. (1998). Large deviation Techniques and Applications, 2nd edn, Springer, New York.

[9]

Ellis, R.S. (1984). Large deviations for a general class of random vectors, Ann. Probab. 12, 1–12.

[10]

Gärtner, J. (1977). On large deviations from the invariant measure, Theory Probab. Appl. 22, 24–39.

[11]

Gao, F. (2001). Moderate deviations for the maximum likelihood estimator, Stat. Probab. Lett. 55, 345– 352.

[12]

Goyal, T.L. and C.M. Harris. (1972). Maximum likelihood estimation for queues with state dependent service, Sankhya Ser. A 34, 65–80.

[13]

Hall, P. and C.C. Heyde. (1980). Martingale Limit Theory and Applications, Academic Press, New York.

[14]

Miao, Y. and Y.-X. Chen. (2010). Note on moderate deviations for the maximum likelihood estimator, Acta Appl. Math. 110, 863–869.

[15]

Miao, Y. and Y. Wang. (2014). Moderate deviation principle for maximum likelihood estimator, Statistics 48, 766–777.

[16]

Singh, S.K. and S.K. Acharya. (2019). Equivalence between Bayes and the maximum likelihood estimator in M/M/1 queue, Commun. Stat.–Theory Methods 48, 4780–4793.

[17]

Wolff, R.W. (1965). Problems of statistical inference for birth and death queueing models, Oper. Res. 13, 243–357.

[18]

Xiao, Z. and L. Liu. (2006). Moderate deviations of maximum likelihood estimator for independent not identically distributed case, Stat. Probab. Lett. 76, 1056–1064.

[1]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial and Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[2]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial and Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[3]

Tatsuaki Kimura, Hiroyuki Masuyama, Yutaka Takahashi. Light-tailed asymptotics of GI/G/1-type Markov chains. Journal of Industrial and Management Optimization, 2017, 13 (4) : 2093-2146. doi: 10.3934/jimo.2017033

[4]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[5]

A. Guillin, R. Liptser. Examples of moderate deviation principle for diffusion processes. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 803-828. doi: 10.3934/dcdsb.2006.6.803

[6]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic and Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[7]

Panpan Ren, Shen Wang. Moderate deviation principles for unbounded additive functionals of distribution dependent SDEs. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3129-3142. doi: 10.3934/cpaa.2021099

[8]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial and Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[9]

Veena Goswami, Gopinath Panda. Customers' joining behavior in an unobservable GI/Geo/m queue. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021059

[10]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[11]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems and Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[12]

Yanqing Liu, Jiyuan Tao, Huan Zhang, Xianchao Xiu, Lingchen Kong. Fused LASSO penalized least absolute deviation estimator for high dimensional linear regression. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 97-117. doi: 10.3934/naco.2018006

[13]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[14]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[15]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[16]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[17]

Ricardo J. Alonso, Véronique Bagland, Bertrand Lods. Uniform estimates on the Fisher information for solutions to Boltzmann and Landau equations. Kinetic and Related Models, 2019, 12 (5) : 1163-1183. doi: 10.3934/krm.2019044

[18]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial and Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[19]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[20]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks and Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

 Impact Factor: 

Metrics

  • PDF downloads (53)
  • HTML views (448)
  • Cited by (1)

Other articles
by authors

[Back to Top]