January  2020, 5: 3 doi: 10.1186/s41546-020-00045-y

Upper risk bounds in internal factor models with constrained specification sets

1. Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten Synagoge 1, KG II, 79098 Freiburg i. Br., Germany

2. Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Straße 1, 79104 Freiburg, Germany

Received  April 17, 2019 Published  March 2020

For the class of (partially specified) internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models. This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor. The proof of our main comparison result is not standard. It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers. An application to real market data shows considerable improvement over the standard method.
Citation: Jonathan Ansari, Ludger Rüschendorf. Upper risk bounds in internal factor models with constrained specification sets. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 3-. doi: 10.1186/s41546-020-00045-y
References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198.

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation.

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22.

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287.

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148.

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178.

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959.

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659.

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863.

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26.

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151.

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226.

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129.

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104.

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352.

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764.

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48.

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790.

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363.

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392.

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265.

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301.

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95.

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton.

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223.

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York.

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740.

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043.

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester.

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York.

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162.

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132.

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840.

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53.

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266.

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927.

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York.

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12.

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham.

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74.

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York.

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation.

show all references

References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198.

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation.

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22.

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287.

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148.

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178.

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959.

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659.

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863.

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26.

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151.

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226.

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129.

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104.

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352.

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764.

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48.

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790.

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363.

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392.

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265.

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301.

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95.

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton.

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223.

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York.

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740.

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043.

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester.

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York.

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162.

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132.

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840.

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53.

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266.

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927.

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York.

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12.

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham.

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74.

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York.

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation.

[1]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[2]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial and Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[3]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial and Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[4]

Yishan Gong, Yang Yang. Asymptotics for VaR and CTE of total aggregate losses in a bivariate operational risk cell model. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1321-1337. doi: 10.3934/jimo.2021022

[5]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[6]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[7]

Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial and Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849

[8]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[9]

Zhimin Zhang. On a risk model with randomized dividend-decision times. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1041-1058. doi: 10.3934/jimo.2014.10.1041

[10]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[11]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial and Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[12]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[13]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[14]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial and Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[15]

Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3-. doi: 10.1186/s41546-017-0012-9

[16]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1365-1391. doi: 10.3934/jimo.2021024

[17]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial and Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[18]

Shou Chen, Chen Xiao. Financial risk contagion and optimal control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022070

[19]

Liyuan Wang, Zhiping Chen, Peng Yang. Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1203-1233. doi: 10.3934/jimo.2020018

[20]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure and Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

 Impact Factor: 

Metrics

  • PDF downloads (50)
  • HTML views (432)
  • Cited by (1)

Other articles
by authors

[Back to Top]