[1]
|
Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913.
|
[2]
|
Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699.
|
[3]
|
Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172.
|
[4]
|
Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona.
|
[5]
|
Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61.
|
[6]
|
Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133.
|
[7]
|
Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882.
|
[8]
|
Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann.
|
[9]
|
Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps.
|
[10]
|
Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS.
|
[11]
|
Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711.
|
[12]
|
Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539.
|
[13]
|
Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592.
|
[14]
|
Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227.
|
[15]
|
Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9.
|
[16]
|
Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056.
|
[17]
|
Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509.
|
[18]
|
Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability.
|
[19]
|
Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357.
|
[20]
|
Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006.
|