-
Previous Article
On the security of generalized Jacobian cryptosystems
- AMC Home
- This Issue
- Next Article
The partial order of perfect codes associated to a perfect code
1. | Department of Mathematics, KTH, Stockholm, Sweden S-100 44, Sweden |
[1] |
Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223 |
[2] |
Luciano Panek, Jerry Anderson Pinheiro, Marcelo Muniz Alves, Marcelo Firer. On perfect poset codes. Advances in Mathematics of Communications, 2020, 14 (3) : 477-489. doi: 10.3934/amc.2020061 |
[3] |
Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems and Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465 |
[4] |
B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037 |
[5] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295 |
[6] |
Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149 |
[7] |
Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425 |
[8] |
Xiang Wang, Wenjuan Yin. New nonexistence results on perfect permutation codes under the hamming metric. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021058 |
[9] |
Maura B. Paterson, Douglas R. Stinson. Splitting authentication codes with perfect secrecy: New results, constructions and connections with algebraic manipulation detection codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021054 |
[10] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121 |
[11] |
Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193 |
[12] |
Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33 |
[13] |
Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115 |
[14] |
Rich Stankewitz, Toshiyuki Sugawa, Hiroki Sumi. Hereditarily non uniformly perfect sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2391-2402. doi: 10.3934/dcdss.2019150 |
[15] |
Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002 |
[16] |
A. V. Borisov, I.S. Mamaev, S. M. Ramodanov. Dynamics of two interacting circular cylinders in perfect fluid. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 235-253. doi: 10.3934/dcds.2007.19.235 |
[17] |
Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59 |
[18] |
Mathieu Dutour Sikiric, Achill Schurmann and Frank Vallentin. Classification of eight-dimensional perfect forms. Electronic Research Announcements, 2007, 13: 21-32. |
[19] |
Cesare Tronci. Hybrid models for perfect complex fluids with multipolar interactions. Journal of Geometric Mechanics, 2012, 4 (3) : 333-363. doi: 10.3934/jgm.2012.4.333 |
[20] |
Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]