
Previous Article
MDS and nearMDS selfdual codes over large prime fields
 AMC Home
 This Issue

Next Article
Generalized AG convolutional codes
Graphbased classification of selfdual additive codes over finite fields
1.  Department of Informatics, University of Bergen, PO Box 7803, N5020 Bergen, Norway 
[1] 
Ken Saito. Selfdual additive $ \mathbb{F}_4 $codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213220. doi: 10.3934/amc.2019014 
[2] 
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant selfdual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171183. doi: 10.3934/amc.2019011 
[3] 
Gabriele Nebe, Wolfgang Willems. On selfdual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633642. doi: 10.3934/amc.2016031 
[4] 
Suat Karadeniz, Bahattin Yildiz. Doublecirculant and bordereddoublecirculant constructions for selfdual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193202. doi: 10.3934/amc.2012.6.193 
[5] 
Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and nearMDS selfdual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349361. doi: 10.3934/amc.2009.3.349 
[6] 
Steven T. Dougherty, Cristina FernándezCórdoba, Roger TenValls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and selfdual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319332. doi: 10.3934/amc.2020023 
[7] 
Masaaki Harada, Akihiro Munemasa. Classification of selfdual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229235. doi: 10.3934/amc.2012.6.229 
[8] 
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal selfdual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267274. doi: 10.3934/amc.2011.5.267 
[9] 
Nikolay Yankov, Damyan Anev, Müberra Gürel. Selfdual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635645. doi: 10.3934/amc.2017047 
[10] 
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing selfdual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471485. doi: 10.3934/amc.2020077 
[11] 
Joe Gildea, Abidin Kaya, Adam Michael Roberts, Rhian Taylor, Alexander Tylyshchak. New selfdual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021039 
[12] 
W. Cary Huffman. Additive selfdual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357398. doi: 10.3934/amc.2007.1.357 
[13] 
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353357. doi: 10.3934/amc.2017028 
[14] 
Simeon Ball, Guillermo Gamboa, Michel Lavrauw. On additive MDS codes over small fields. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021024 
[15] 
T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasitwisted selfdual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223238. doi: 10.3934/amc.2007.1.223 
[16] 
Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even selfdual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251256. doi: 10.3934/amc.2007.1.251 
[17] 
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally selfdual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433439. doi: 10.3934/amc.2010.4.433 
[18] 
Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of selfdual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 2336. doi: 10.3934/amc.2011.5.23 
[19] 
Bram van Asch, Frans Martens. Lee weight enumerators of selfdual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393402. doi: 10.3934/amc.2008.2.393 
[20] 
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain selfdual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 6568. doi: 10.3934/amc.2012.6.65 
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]