In this work the least covering radii of all binary linear codes of dimension 6 are determined. Codes of dimension up to 6 and lengths up to 15 having the least covering radius are classified and constructions of codes with $R=t$2$[n,k]$ of every length and dimension up to 6 are given. Examples of using this classification for the construction of codes with the least covering radius and dimensions greater than 6 are presented.