November  2010, 4(4): 533-545. doi: 10.3934/amc.2010.4.533

Input-state-output representations and constructions of finite support 2D convolutional codes

1. 

Department of Mathematics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal, Portugal

2. 

Center of Operation Research, Department of Statistics, Mathematics and Informatics, University Miguel Hernández, Av. Universidad s/n, 0302 Elche, Spain

Received  December 2009 Revised  June 2010 Published  November 2010

Two-dimensional convolutional codes are considered, with codewords having compact support indexed in $\mathbb N$2 and taking values in $\mathbb F$n, where $\mathbb F$ is a finite field. Input-state-output representations of these codes are introduced and several aspects of such representations are discussed. Constructive procedures of such codes with a designed distance are also presented.
Citation: Diego Napp, Carmen Perea, Raquel Pinto. Input-state-output representations and constructions of finite support 2D convolutional codes. Advances in Mathematics of Communications, 2010, 4 (4) : 533-545. doi: 10.3934/amc.2010.4.533
References:
[1]

E. Fornasini and G. Marchesini, Structure and properties of two-dimensional systems, in "Multidimensional Systems, Techniques and Applications'' (ed. S.G. Tzafestas), (1986), 37-88.

[2]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inf. Th., 40 (1994), 1068-1082. doi: 10.1109/18.335967.

[3]

H. Gluesing-Luersen, J. Rosenthal and P. A. Weiner, Duality between mutidimensinal convolutional codes and systems, in "Advances in Mathematical Systems Theory, a Volume in Honor of Diedrich Hinrichsen'' (eds. F. Colonius, U. Helmke, F. Wirth and D. Prtzel-Wolters), Birkhuser, Boston, (2000), 135-150.

[4]

J. Justesen and S. Forchhammer, Two dimensional information theory and coding. With applications to graphics data and high-density storage media, Cambridge University Press, Cambridge, (2010), 171.

[5]

T. Kailath, "Linear Systems,'' Prentice Hall, Englewood Cliffs, NJ, 1980.

[6]

B. Kitchens, Multidimensional convolutional codes, SIAM J. Discrete Math., 15 (2002), 367-381. doi: 10.1137/S0895480100378495.

[7]

B. C. Lévy, "2-D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,'' Ph.D thesis, Stanford University, USA, 1981.

[8]

R. G. Lobo, "On Locally Invertible Encoders and Muldimensional Convolutional Codes,'' Ph.D thesis, North Carolina State University, USA, 2006.

[9]

P. Rocha, "Structure and Representation of 2-D Systems,'' Ph.D thesis, Groningen University, Holland, 1990.

[10]

J. Rosenthal, J. M. Schumacher and E. V. York, On behaviors and convolutional codes, IEEE Trans. Inf. Th., 42 (1996), 1881-1891. doi: 10.1109/18.556682.

[11]

J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15-32. doi: 10.1007/s002000050120.

[12]

J. Rosenthal and E. V. York, BCH convolutional codes, IEEE Trans. Inf. Th., 45 (1999), 1833-1844. doi: 10.1109/18.782104.

[13]

J. Singh and M. L. Singh, A new family of two-dimensional codes for optical CDMA systems, Optik - International Journal for Light and Electron Optics, 120 (2009), 959-962.

[14]

J. Swartz, T. Pavlidis and Y. P. Wang, Information encoding with two-dimensional bar codes, IEEE Computer Society, 25 (1992), 18-28.

[15]

M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes: an algebraic approach, Multidimensional Systems and Signal Processing, 5 (1994), 231-243. doi: 10.1007/BF00980707.

[16]

P. Weiner, "Muldimensional Convolutional Codes,'' Ph.D thesis, University of Notre Dame, USA, 1998.

[17]

X.-L. Zhou and Y. Hu, Multilength two-dimensional codes for optical cdma system, Optoelectronics Letters, 1 (2005), 232-234. doi: 10.1007/BF03033851.

show all references

References:
[1]

E. Fornasini and G. Marchesini, Structure and properties of two-dimensional systems, in "Multidimensional Systems, Techniques and Applications'' (ed. S.G. Tzafestas), (1986), 37-88.

[2]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inf. Th., 40 (1994), 1068-1082. doi: 10.1109/18.335967.

[3]

H. Gluesing-Luersen, J. Rosenthal and P. A. Weiner, Duality between mutidimensinal convolutional codes and systems, in "Advances in Mathematical Systems Theory, a Volume in Honor of Diedrich Hinrichsen'' (eds. F. Colonius, U. Helmke, F. Wirth and D. Prtzel-Wolters), Birkhuser, Boston, (2000), 135-150.

[4]

J. Justesen and S. Forchhammer, Two dimensional information theory and coding. With applications to graphics data and high-density storage media, Cambridge University Press, Cambridge, (2010), 171.

[5]

T. Kailath, "Linear Systems,'' Prentice Hall, Englewood Cliffs, NJ, 1980.

[6]

B. Kitchens, Multidimensional convolutional codes, SIAM J. Discrete Math., 15 (2002), 367-381. doi: 10.1137/S0895480100378495.

[7]

B. C. Lévy, "2-D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,'' Ph.D thesis, Stanford University, USA, 1981.

[8]

R. G. Lobo, "On Locally Invertible Encoders and Muldimensional Convolutional Codes,'' Ph.D thesis, North Carolina State University, USA, 2006.

[9]

P. Rocha, "Structure and Representation of 2-D Systems,'' Ph.D thesis, Groningen University, Holland, 1990.

[10]

J. Rosenthal, J. M. Schumacher and E. V. York, On behaviors and convolutional codes, IEEE Trans. Inf. Th., 42 (1996), 1881-1891. doi: 10.1109/18.556682.

[11]

J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15-32. doi: 10.1007/s002000050120.

[12]

J. Rosenthal and E. V. York, BCH convolutional codes, IEEE Trans. Inf. Th., 45 (1999), 1833-1844. doi: 10.1109/18.782104.

[13]

J. Singh and M. L. Singh, A new family of two-dimensional codes for optical CDMA systems, Optik - International Journal for Light and Electron Optics, 120 (2009), 959-962.

[14]

J. Swartz, T. Pavlidis and Y. P. Wang, Information encoding with two-dimensional bar codes, IEEE Computer Society, 25 (1992), 18-28.

[15]

M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes: an algebraic approach, Multidimensional Systems and Signal Processing, 5 (1994), 231-243. doi: 10.1007/BF00980707.

[16]

P. Weiner, "Muldimensional Convolutional Codes,'' Ph.D thesis, University of Notre Dame, USA, 1998.

[17]

X.-L. Zhou and Y. Hu, Multilength two-dimensional codes for optical cdma system, Optoelectronics Letters, 1 (2005), 232-234. doi: 10.1007/BF03033851.

[1]

Julia Lieb, Raquel Pinto. A decoding algorithm for 2D convolutional codes over the erasure channel. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021031

[2]

Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179

[3]

Jintao Li, Jindou Shen, Gang Xu. The global supersonic flow with vacuum state in a 2D convex duct. Electronic Research Archive, 2021, 29 (2) : 2077-2099. doi: 10.3934/era.2020106

[4]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[5]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[6]

Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems and Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022

[7]

Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems and Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591

[8]

Gerhard Kirsten. Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differential equations. Journal of Computational Dynamics, 2022, 9 (2) : 159-183. doi: 10.3934/jcd.2021025

[9]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[10]

Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005

[11]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[12]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085

[13]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[14]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[15]

Heide Gluesing-Luerssen. On isometries for convolutional codes. Advances in Mathematics of Communications, 2009, 3 (2) : 179-203. doi: 10.3934/amc.2009.3.179

[16]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[17]

Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095

[18]

Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145

[19]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[20]

Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (132)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]