\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Input-state-output representations and constructions of finite support 2D convolutional codes

Abstract Related Papers Cited by
  • Two-dimensional convolutional codes are considered, with codewords having compact support indexed in $\mathbb N$2 and taking values in $\mathbb F$n, where $\mathbb F$ is a finite field. Input-state-output representations of these codes are introduced and several aspects of such representations are discussed. Constructive procedures of such codes with a designed distance are also presented.
    Mathematics Subject Classification: Primary: 94B10, 93C35; Secondary: 93B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Fornasini and G. Marchesini, Structure and properties of two-dimensional systems, in "Multidimensional Systems, Techniques and Applications'' (ed. S.G. Tzafestas), (1986), 37-88.

    [2]

    E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inf. Th., 40 (1994), 1068-1082.doi: 10.1109/18.335967.

    [3]

    H. Gluesing-Luersen, J. Rosenthal and P. A. Weiner, Duality between mutidimensinal convolutional codes and systems, in "Advances in Mathematical Systems Theory, a Volume in Honor of Diedrich Hinrichsen'' (eds. F. Colonius, U. Helmke, F. Wirth and D. Prtzel-Wolters), Birkhuser, Boston, (2000), 135-150.

    [4]

    J. Justesen and S. Forchhammer, Two dimensional information theory and coding. With applications to graphics data and high-density storage media, Cambridge University Press, Cambridge, (2010), 171.

    [5]

    T. Kailath, "Linear Systems,'' Prentice Hall, Englewood Cliffs, NJ, 1980.

    [6]

    B. Kitchens, Multidimensional convolutional codes, SIAM J. Discrete Math., 15 (2002), 367-381.doi: 10.1137/S0895480100378495.

    [7]

    B. C. Lévy, "2-D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,'' Ph.D thesis, Stanford University, USA, 1981.

    [8]

    R. G. Lobo, "On Locally Invertible Encoders and Muldimensional Convolutional Codes,'' Ph.D thesis, North Carolina State University, USA, 2006.

    [9]

    P. Rocha, "Structure and Representation of 2-D Systems,'' Ph.D thesis, Groningen University, Holland, 1990.

    [10]

    J. Rosenthal, J. M. Schumacher and E. V. York, On behaviors and convolutional codes, IEEE Trans. Inf. Th., 42 (1996), 1881-1891.doi: 10.1109/18.556682.

    [11]

    J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15-32.doi: 10.1007/s002000050120.

    [12]

    J. Rosenthal and E. V. York, BCH convolutional codes, IEEE Trans. Inf. Th., 45 (1999), 1833-1844.doi: 10.1109/18.782104.

    [13]

    J. Singh and M. L. Singh, A new family of two-dimensional codes for optical CDMA systems, Optik - International Journal for Light and Electron Optics, 120 (2009), 959-962.

    [14]

    J. Swartz, T. Pavlidis and Y. P. Wang, Information encoding with two-dimensional bar codes, IEEE Computer Society, 25 (1992), 18-28.

    [15]

    M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes: an algebraic approach, Multidimensional Systems and Signal Processing, 5 (1994), 231-243.doi: 10.1007/BF00980707.

    [16]

    P. Weiner, "Muldimensional Convolutional Codes,'' Ph.D thesis, University of Notre Dame, USA, 1998.

    [17]

    X.-L. Zhou and Y. Hu, Multilength two-dimensional codes for optical cdma system, Optoelectronics Letters, 1 (2005), 232-234.doi: 10.1007/BF03033851.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return