Advanced Search
Article Contents
Article Contents

Bounds for binary codes relative to pseudo-distances of $k$ points

Abstract Related Papers Cited by
  • We apply Schrijver's semidefinite programming method to obtain improved upper bounds on generalized distances and list decoding radii of binary codes.
    Mathematics Subject Classification: 94B65, 90C22.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Ashikhmin, A. Barg and S. Litsyn, New upper bounds on generalized weights, IEEE Trans. Inform. Theory, IT-45 (1999), 1258-1263.doi: 10.1109/18.761280.


    L. A. Bassalygo, Supports of a code, in "Proc. AAECC 11,'' (1995), 1-3.


    C. Bachoc, Semidefinite programming, harmonic analysis and coding theory, Lecture notes of a CIMPA course, 2009, arXiv:0909.4767


    C. Bachoc, D. Gijswijt, A. Schrijver and F. VallentinInvariant semidefinite programs, preprint, arXiv:1007.2905


    V. M. Blinovskii, Bounds for codes in the case of list decoding of finite volume, Problems of Information Transmission, 22 (1986), 7-19.


    V. M. Blinovskii, Generalization of Plotkin bound to the case of multiple packing, in "ISIT 2009''.


    G. Cohen, S. Litsyn and G. Zémor, Upper bounds on generalized Hamming distances, IEEE Trans. Inform. Theory, 40 (1994), 2090-2092.doi: 10.1109/18.340487.


    J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups,'' Springer-Verlag, 1988.


    P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., (1973), vi+97.


    P. Delsarte, Hahn polynomials, discrete harmonics and $t$-designs, SIAM J. Appl. Math., 34 (1978), 157-166.doi: 10.1137/0134012.


    V. Guruswami, List decoding from erasures: bounds and code constructions, IEEE Trans. Inform. Theory, IT-49 (2003), 2826-2833.doi: 10.1109/TIT.2003.815776.


    V. I. Levenshtein, Universal bounds for codes and designs, in "Handbook of Coding Theory'' (eds. V. Pless and W.C. Huffmann), North-Holland, Amsterdam, (1998), 499-648.


    R. J. McEliece, E. R. Rodemich, H. Rumsey and L. Welch, New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory, IT-23 (1977), 157-166.doi: 10.1109/TIT.1977.1055688.


    L. H. Ozarow and A. D. Wyner, Wire-tap channel II, in "Advances in cryptology (Paris, 1984),'' Springer, Berlin, (1985), 33-50.


    A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory, IT-51 (2005), 2859-2866.doi: 10.1109/TIT.2005.851748.


    M. Sudan, Decoding of Reed Solomon codes beyond the error-correction bound, Journal of Complexity, 13 (1997), 180-193.doi: 10.1006/jcom.1997.0439.


    F. VallentinLecture notes: Semidefinite programs and harmonic analysis, preprint, arXiv:0809.2017


    F. Vallentin, Symmetry in semidefinite programs, Linear Algebra and Appl., 430 (2009), 360-369.doi: 10.1016/j.laa.2008.07.025.


    V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, IT-37 (1991), 1412-1418.doi: 10.1109/18.133259.


    G. Zémor, Threshold effects in codes, in "Algebraic coding (Paris, 1993),''


    G. Zémor and G. Cohen, The threshold probability of a code, IEEE Trans. Inform. Theory, IT-41 (1995), 469-477.doi: 10.1109/18.370148.

  • 加载中

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint