\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual

Abstract Related Papers Cited by
  • We characterize all $q$-ary linear completely regular codes with covering radius $\rho=2$ when the dual codes are antipodal. These completely regular codes are extensions of linear completely regular codes with covering radius 1, which we also classify. For $\rho=2$, we give a list of all such codes known to us. This also gives the characterization of two weight linear antipodal codes. Finally, for a class of completely regular codes with covering radius $\rho=2$ and antipodal dual, some interesting properties on self-duality and lifted codes are pointed out.
    Mathematics Subject Classification: Primary: 94B25; Secondary: 94B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. A. Bassalygo, G. V. Zaitsev and V. A. Zinoviev, Uniformly close-packed codes, Problems Inform. Transmiss., 10 (1974), 9-14.

    [2]

    L. A. Bassalygo and V. A. Zinoviev, A remark on uniformly packed codes, Problems Inform. Transmiss., 13 (1977), 22-25.

    [3]

    G. Bogdanova, V. A. Zinoviev and T. J. Todorov, On construction of $q$-ary equidistant codes, Problems Inform. Transmiss., 43 (2007), 13-36.doi: 10.1134/S0032946007040023.

    [4]

    A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.

    [5]

    J. Borges and J. Rifà, On the nonexistence of completely transitive codes, IEEE Trans. Inform. Theory, 46 (2000), 279-280.doi: 10.1109/18.817528.

    [6]

    J. Borges, J. Rifà and V. A. Zinoviev, Nonexistence of completely transitive codes with error-correcting capability $e > 3$, IEEE Trans. Inform. Theory, 47 (2001), 1619-1621.doi: 10.1109/18.923747.

    [7]

    J. Borges, J. Rifà and V. A. Zinoviev, On non-antipodal binary completely regular codes, Discrete Math., 308 (2008), 3508-3525.doi: 10.1016/j.disc.2007.07.008.

    [8]

    J. Borges, J. Rifà and V. A. ZinovievOn linear completely regular codes with covering radius $\rho=1$, preprint, arXiv:0906.0550v1

    [9]

    A. E. Brouwer, A. M. Cohen and A. Neumaier, "Distance-Regular Graphs," Springer-Verlag, Berlin, 1989.

    [10]

    K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat., 23 (1952), 426-434.doi: 10.1214/aoms/1177729387.

    [11]

    A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.doi: 10.1112/blms/18.2.97.

    [12]

    C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs," CRC Press, Boca Raton, FL, 1996.doi: 10.1201/9781420049954.

    [13]

    G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes," Elsevier Science, The Nederlands, 1997.

    [14]

    P. Delsarte, Two-weight linear codes and strongly regular graphs, MBLE Research Laboratory, Report R160, 1971.

    [15]

    P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplements, 10 (1973), vi+97.

    [16]

    D. G. Fon-Der-Flaas, Perfect $2$-coloring of hypercube, Siberian Math. J., 48 (2007), 923-930.doi: 10.1007/s11202-007-0075-4.

    [17]

    D. G. Fon-Der-Flaas, Perfect $2$-coloring of the $12$-cube that attain the bound on correlation immunity, Siberian Electronic Math. Reports, 4 (2007), 292-295.

    [18]

    M. Giudici and C. E. Praeger, Completely transitive codes in Hamming graphs, Europ. J. Combinatorics, 20 (1999), 647-662.doi: 10.1006/eujc.1999.0313.

    [19]

    J. M. Goethals and H. C. A. Van Tilborg, Uniformly packed codes, Philips Res., 30 (1975), 9-36.

    [20]

    J. H. Koolen, W. S. Lee and W. J. MartinArithmetic completely regular codes, preprint, arXiv:0911.1826v1

    [21]

    F. J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Techn. J., 42 (1963), 79-84.

    [22]

    F. J. MacWilliams and N. J. A. Sloane, "The Theory if Error-Correcting Codes," Elsevier, North-Holland, 1977.

    [23]

    A. Neumaier, Completely regular codes, Discrete Math., 106/107 (1992), 353-360.doi: 10.1016/0012-365X(92)90565-W.

    [24]

    J. Rifà and V. A. Zinoviev, On new completely regular $q$-ary codes, Problems Inform. Transmiss., 43 (2007), 97-112.doi: 10.1134/S0032946007020032.

    [25]

    J. Rifà and V. A. Zinoviev, New completely regular $q$-ary codes, based on Kronecker products, IEEE Trans. Inform. Theory, 56 (2010), 266-272.doi: 10.1109/TIT.2009.2034812.

    [26]

    J. Rifà and V. A. ZinovievOn lifting perfect codes, preprint, arXiv:1002.0295

    [27]

    N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Class of maximal equidistant codes, Problems Inform. Transmiss., 5 (1969), 84-87.

    [28]

    N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Uniformly close-packed codes, Problems Inform. Transmiss., 7 (1971), 38-50.

    [29]

    J. Singer, A theorem in finite projective geometry, and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377-385.

    [30]

    P. Solé, Completely regular codes and completely transitive codes, Discrete Math., 81 (1990), 193-201.doi: 10.1016/0012-365X(90)90152-8.

    [31]

    A. Tietäväinen, On the non-existence of perfect codes over finite fields, SIAM J. Appl. Math., 24 (1973), 88-96.doi: 10.1137/0124010.

    [32]

    H. C. A. Van Tilborg, "Uniformly Packed Codes," Ph.D thesis, Eindhoven Univ. of Tech., 1976.

    [33]

    V. A. Zinoviev and V. K. Leontiev, The nonexistence of perfect codes over Galois fields, Problems Control Inform. Th., 2 (1973), 16-24.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return