Citation: |
[1] |
S. W. Golomb and E. C. Posner, Rook domains, Latin squares, and error-distributing codes, IEEE Trans. Inf. Theory, 10 (1964), 196-208.doi: 10.1109/TIT.1964.1053680. |
[2] |
O. Heden, On the classification of perfect binary $1$-error correcting codes, preprint, TRITA-MAT-2002-01, KTH, Stockholm, 2002. |
[3] |
D. S. Krotov, Combining construction of perfect binary codes, Probl. Inf. Transm., 36 (2000), 349-353; Translated from Probl. Peredachi Inf., 36 (2000), 74-79. |
[4] |
D. S. Krotov, V. N. Potapov and P. V. Sokolova, On reconstructing reducible $n$-ary quasigroups and switching subquasigroups, Quasigroups Relat. Syst., 16 (2008), 55-67. |
[5] |
C. F. Laywine and G. L. Mullen, "Discrete Mathematics Using Latin Squares,'' Wiley, New York, 1998. |
[6] |
A. V. Los', Construction of perfect $q$-ary codes by switchings of simple components, Probl. Inf. Transm., 42 (2006), 30-37; Translated from Probl. Peredachi Inf., 42 (2006), 34-42.doi: 10.1134/S0032946006010030. |
[7] |
M. Mollard, A generalized parity function and its use in the construction of perfect codes, SIAM J. Algebraic Discrete Methods, 7 (1986), 113-115.doi: 10.1137/0607013. |
[8] |
K. T. Phelps, A general product construction for error correcting codes, SIAM J. Algebraic Discrete Methods, 5 (1984), 224-228.doi: 10.1137/0605023. |
[9] |
K. T. Phelps, A product construction for perfect codes over arbitrary alphabets, IEEE Trans. Inf. Theory, 30 (1984), 769-771.doi: 10.1109/TIT.1984.1056963. |
[10] |
V. N. Potapov and D. S. Krotov, Asymptotics for the number of $n$-quasigroups of order $4$, Sib. Math. J., 47 (2006), 720-731; Translated from Sib. Mat. Zh., 47 (2006), 873-887.doi: 10.1007/s11202-006-0083-9. |
[11] |
V. N. Potapov and D. S. Krotov, On the number of $n$-ary quasigroups of finite order (in Russian), Diskretnaya Matematika, 23 (2011), accepted; to be translated in Discrete Math. Appl., 21; arXiv:0912.5453 |