-
Previous Article
A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$
- AMC Home
- This Issue
-
Next Article
Editorial
On the structure of non-full-rank perfect $q$-ary codes
1. | Department of Mathematics, KTH, S-100 44 Stockholm, Sweden |
2. | Sobolev Institute of Mathematics, Mechanics and Mathematics Department, Novosibirsk State University, Novosibirsk, Russian Federation |
References:
[1] |
S. W. Golomb and E. C. Posner, Rook domains, Latin squares, and error-distributing codes, IEEE Trans. Inf. Theory, 10 (1964), 196-208.
doi: 10.1109/TIT.1964.1053680. |
[2] |
O. Heden, On the classification of perfect binary $1$-error correcting codes, preprint, TRITA-MAT-2002-01, KTH, Stockholm, 2002. |
[3] |
D. S. Krotov, Combining construction of perfect binary codes, Probl. Inf. Transm., 36 (2000), 349-353; Translated from Probl. Peredachi Inf., 36 (2000), 74-79. |
[4] |
D. S. Krotov, V. N. Potapov and P. V. Sokolova, On reconstructing reducible $n$-ary quasigroups and switching subquasigroups, Quasigroups Relat. Syst., 16 (2008), 55-67. |
[5] |
C. F. Laywine and G. L. Mullen, "Discrete Mathematics Using Latin Squares,'' Wiley, New York, 1998. |
[6] |
A. V. Los', Construction of perfect $q$-ary codes by switchings of simple components, Probl. Inf. Transm., 42 (2006), 30-37; Translated from Probl. Peredachi Inf., 42 (2006), 34-42.
doi: 10.1134/S0032946006010030. |
[7] |
M. Mollard, A generalized parity function and its use in the construction of perfect codes, SIAM J. Algebraic Discrete Methods, 7 (1986), 113-115.
doi: 10.1137/0607013. |
[8] |
K. T. Phelps, A general product construction for error correcting codes, SIAM J. Algebraic Discrete Methods, 5 (1984), 224-228.
doi: 10.1137/0605023. |
[9] |
K. T. Phelps, A product construction for perfect codes over arbitrary alphabets, IEEE Trans. Inf. Theory, 30 (1984), 769-771.
doi: 10.1109/TIT.1984.1056963. |
[10] |
V. N. Potapov and D. S. Krotov, Asymptotics for the number of $n$-quasigroups of order $4$, Sib. Math. J., 47 (2006), 720-731; Translated from Sib. Mat. Zh., 47 (2006), 873-887.
doi: 10.1007/s11202-006-0083-9. |
[11] |
V. N. Potapov and D. S. Krotov, On the number of $n$-ary quasigroups of finite order (in Russian), Diskretnaya Matematika, 23 (2011), accepted; to be translated in Discrete Math. Appl., 21; arXiv:0912.5453 |
show all references
References:
[1] |
S. W. Golomb and E. C. Posner, Rook domains, Latin squares, and error-distributing codes, IEEE Trans. Inf. Theory, 10 (1964), 196-208.
doi: 10.1109/TIT.1964.1053680. |
[2] |
O. Heden, On the classification of perfect binary $1$-error correcting codes, preprint, TRITA-MAT-2002-01, KTH, Stockholm, 2002. |
[3] |
D. S. Krotov, Combining construction of perfect binary codes, Probl. Inf. Transm., 36 (2000), 349-353; Translated from Probl. Peredachi Inf., 36 (2000), 74-79. |
[4] |
D. S. Krotov, V. N. Potapov and P. V. Sokolova, On reconstructing reducible $n$-ary quasigroups and switching subquasigroups, Quasigroups Relat. Syst., 16 (2008), 55-67. |
[5] |
C. F. Laywine and G. L. Mullen, "Discrete Mathematics Using Latin Squares,'' Wiley, New York, 1998. |
[6] |
A. V. Los', Construction of perfect $q$-ary codes by switchings of simple components, Probl. Inf. Transm., 42 (2006), 30-37; Translated from Probl. Peredachi Inf., 42 (2006), 34-42.
doi: 10.1134/S0032946006010030. |
[7] |
M. Mollard, A generalized parity function and its use in the construction of perfect codes, SIAM J. Algebraic Discrete Methods, 7 (1986), 113-115.
doi: 10.1137/0607013. |
[8] |
K. T. Phelps, A general product construction for error correcting codes, SIAM J. Algebraic Discrete Methods, 5 (1984), 224-228.
doi: 10.1137/0605023. |
[9] |
K. T. Phelps, A product construction for perfect codes over arbitrary alphabets, IEEE Trans. Inf. Theory, 30 (1984), 769-771.
doi: 10.1109/TIT.1984.1056963. |
[10] |
V. N. Potapov and D. S. Krotov, Asymptotics for the number of $n$-quasigroups of order $4$, Sib. Math. J., 47 (2006), 720-731; Translated from Sib. Mat. Zh., 47 (2006), 873-887.
doi: 10.1007/s11202-006-0083-9. |
[11] |
V. N. Potapov and D. S. Krotov, On the number of $n$-ary quasigroups of finite order (in Russian), Diskretnaya Matematika, 23 (2011), accepted; to be translated in Discrete Math. Appl., 21; arXiv:0912.5453 |
[1] |
Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165 |
[2] |
Joaquim Borges, Josep Rifà, Victor A. Zinoviev. On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual. Advances in Mathematics of Communications, 2010, 4 (4) : 567-578. doi: 10.3934/amc.2010.4.567 |
[3] |
Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35 |
[4] |
Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041 |
[5] |
Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223 |
[6] |
Luciano Panek, Jerry Anderson Pinheiro, Marcelo Muniz Alves, Marcelo Firer. On perfect poset codes. Advances in Mathematics of Communications, 2020, 14 (3) : 477-489. doi: 10.3934/amc.2020061 |
[7] |
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 |
[8] |
Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 |
[9] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[10] |
Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems and Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465 |
[11] |
B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037 |
[12] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[13] |
Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055 |
[14] |
Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001 |
[15] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[16] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295 |
[17] |
Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425 |
[18] |
Xiang Wang, Wenjuan Yin. New nonexistence results on perfect permutation codes under the hamming metric. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021058 |
[19] |
Maura B. Paterson, Douglas R. Stinson. Splitting authentication codes with perfect secrecy: New results, constructions and connections with algebraic manipulation detection codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021054 |
[20] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]