\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$

Abstract Related Papers Cited by
  • We give a geometric proof of the upper bound of q2n+1$+1$ on the size of partial spreads in the polar space $H(4n+1,$q2$)$. This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in $H(4n+1,$q2$)$.
    Mathematics Subject Classification: 05B25, 51E23.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Aguglia, A. Cossidente and G. L. Ebert, Complete spans on Hermitian varieties, Des. Codes Cryptogr., 29 (2003), 7-15.doi: 10.1023/A:1024179703511.

    [2]

    J. De Beule, A. Klein, K. Metsch and L. Storme, Partial ovoids and partial spreads in Hermitian polar spaces, Des. Codes Cryptogr., 47 (2008), 21-34.doi: 10.1007/s10623-007-9047-8.

    [3]

    J. De Beule and K. Metsch, The maximum size of a partial spread in $H(5,q^2)$ is $q^3+1$, J. Combin. Theory Ser. A, 114 (2007), 761-768.doi: 10.1016/j.jcta.2006.08.005.

    [4]

    J. W. P. Hirschfeld and J. A. Thas, "General Galois Geometries,'' The Clarendon Press, Oxford University Press, New York, 1991.

    [5]

    D. Luyckx, On maximal partial spreads of $H(2n+1,q^2)$, Discrete Math., 308 (2008), 375-379.doi: 10.1016/j.disc.2006.11.051.

    [6]

    J. A. Thas, Old and new results on spreads and ovoids of finite classical polar spaces, Ann. Discrete Math., 52 (1992), 529-544.doi: 10.1016/S0167-5060(08)70936-1.

    [7]

    F. Vanhove, The maximum size of a partial spread in $H(4n+1,q^2)$ is q2n+1$+1$, Electron. J. Combin., 16 (2009), 1-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(55) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return