Citation: |
[1] |
A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, "Error-Correcting Linear Codes - Classification by Isometry and Applications,'' Springer, Berlin, Heidelberg, New York, 2006. |
[2] |
L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Can. J. Math., 19 (1967), 810-822.doi: 10.4153/CJM-1967-075-4. |
[3] |
H. Fripertinger, Enumeration of isometry classes of linear $(n,k)$-codes over $GF(q)$ in SYMMETRICA, Bayreuth. Math. Schr., 49 (1995), 215-223. |
[4] |
H. Fripertinger, Enumeration of linear codes by applying methods from algebraic combinatorics, Grazer Math. Ber., 328 (1996), 31-42. |
[5] |
H. Fripertinger, Cycle indices of linear, affine and projective groups, Linear Algebra Appl., 263 (1997), 133-156.doi: 10.1016/S0024-3795(96)00530-7. |
[6] |
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, in "Applied Algebra, Algebraic Algorithms and Error-Correcting Codes'' (eds. G. Cohen, M. Giusti and T. Mora), Springer, 1995, 194-204. |
[7] | |
[8] |
N. Jacobson, "Lectures In Abstract Algebra, II,'' D. Van Nostrand Company Inc., New York, 1953. |
[9] |
A. Kerber, "Applied Finite Group Actions,'' Springer, Berlin, Heidelberg, New York, 1999. |
[10] |
J. P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36 (1981), 141-155.doi: 10.1016/0024-3795(81)90227-5. |
[11] |
W. Lehmann, Das Abzähltheorem der Exponentialgruppe in gewichteter Form (in German), Mitt. Math. Sem. Giessen, 112 (1974), 19-33. |
[12] |
W. Lehmann, "Ein vereinheitlichender Ansatz für die REDFIELD - PÓLYA - de BRUIJNSCHE Abzähltheorie,'' Ph.D thesis, Universität Giessen, 1976. |
[13] |
G. E. Séguin, The algebraic structure of codes invariant under a permutation, in "Information Theory and Applications, II,'' Springer, Berlin, (1996), 1-18. |
[14] |
D. Slepian, Some further theory of group codes, Bell Sys. Techn. J., 39 (1960), 1219-1252. |
[15] |
D. Slepian, Some further theory of group codes, in "Algebraic Coding Theory: History and Development'' (ed. I.F. Blake), Stroudsbourg, Dowden, Hutchinson & Ross, Inc., (1973), 118-151. |
[16] |
SYMMETRICA,, A program system devoted to representation theory, (9544).
|