\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The number of invariant subspaces under a linear operator on finite vector spaces

Abstract Related Papers Cited by
  • Let $V$ be an $n$-dimensional vector space over the finite field $\mathbb F$q and $T$ a linear operator on $V$. For each $k\in\{1,\ldots,n\}$ we determine the number of $k$-dimensional $T$-invariant subspaces of $V$. Finally, this method is applied for the enumeration of all monomially nonisometric linear $(n,k)$-codes over $\mathbb F$q.
    Mathematics Subject Classification: Primary: 05E18; Secondary: 47A46.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, "Error-Correcting Linear Codes - Classification by Isometry and Applications,'' Springer, Berlin, Heidelberg, New York, 2006.

    [2]

    L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Can. J. Math., 19 (1967), 810-822.doi: 10.4153/CJM-1967-075-4.

    [3]

    H. Fripertinger, Enumeration of isometry classes of linear $(n,k)$-codes over $GF(q)$ in SYMMETRICA, Bayreuth. Math. Schr., 49 (1995), 215-223.

    [4]

    H. Fripertinger, Enumeration of linear codes by applying methods from algebraic combinatorics, Grazer Math. Ber., 328 (1996), 31-42.

    [5]

    H. Fripertinger, Cycle indices of linear, affine and projective groups, Linear Algebra Appl., 263 (1997), 133-156.doi: 10.1016/S0024-3795(96)00530-7.

    [6]

    H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, in "Applied Algebra, Algebraic Algorithms and Error-Correcting Codes'' (eds. G. Cohen, M. Giusti and T. Mora), Springer, 1995, 194-204.

    [7]
    [8]

    N. Jacobson, "Lectures In Abstract Algebra, II,'' D. Van Nostrand Company Inc., New York, 1953.

    [9]

    A. Kerber, "Applied Finite Group Actions,'' Springer, Berlin, Heidelberg, New York, 1999.

    [10]

    J. P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36 (1981), 141-155.doi: 10.1016/0024-3795(81)90227-5.

    [11]

    W. Lehmann, Das Abzähltheorem der Exponentialgruppe in gewichteter Form (in German), Mitt. Math. Sem. Giessen, 112 (1974), 19-33.

    [12]

    W. Lehmann, "Ein vereinheitlichender Ansatz für die REDFIELD - PÓLYA - de BRUIJNSCHE Abzähltheorie,'' Ph.D thesis, Universität Giessen, 1976.

    [13]

    G. E. Séguin, The algebraic structure of codes invariant under a permutation, in "Information Theory and Applications, II,'' Springer, Berlin, (1996), 1-18.

    [14]

    D. Slepian, Some further theory of group codes, Bell Sys. Techn. J., 39 (1960), 1219-1252.

    [15]

    D. Slepian, Some further theory of group codes, in "Algebraic Coding Theory: History and Development'' (ed. I.F. Blake), Stroudsbourg, Dowden, Hutchinson & Ross, Inc., (1973), 118-151.

    [16]
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return