Advanced Search
Article Contents
Article Contents

The number of invariant subspaces under a linear operator on finite vector spaces

Abstract Related Papers Cited by
  • Let $V$ be an $n$-dimensional vector space over the finite field $\mathbb F$q and $T$ a linear operator on $V$. For each $k\in\{1,\ldots,n\}$ we determine the number of $k$-dimensional $T$-invariant subspaces of $V$. Finally, this method is applied for the enumeration of all monomially nonisometric linear $(n,k)$-codes over $\mathbb F$q.
    Mathematics Subject Classification: Primary: 05E18; Secondary: 47A46.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, "Error-Correcting Linear Codes - Classification by Isometry and Applications,'' Springer, Berlin, Heidelberg, New York, 2006.


    L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Can. J. Math., 19 (1967), 810-822.doi: 10.4153/CJM-1967-075-4.


    H. Fripertinger, Enumeration of isometry classes of linear $(n,k)$-codes over $GF(q)$ in SYMMETRICA, Bayreuth. Math. Schr., 49 (1995), 215-223.


    H. Fripertinger, Enumeration of linear codes by applying methods from algebraic combinatorics, Grazer Math. Ber., 328 (1996), 31-42.


    H. Fripertinger, Cycle indices of linear, affine and projective groups, Linear Algebra Appl., 263 (1997), 133-156.doi: 10.1016/S0024-3795(96)00530-7.


    H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, in "Applied Algebra, Algebraic Algorithms and Error-Correcting Codes'' (eds. G. Cohen, M. Giusti and T. Mora), Springer, 1995, 194-204.


    N. Jacobson, "Lectures In Abstract Algebra, II,'' D. Van Nostrand Company Inc., New York, 1953.


    A. Kerber, "Applied Finite Group Actions,'' Springer, Berlin, Heidelberg, New York, 1999.


    J. P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36 (1981), 141-155.doi: 10.1016/0024-3795(81)90227-5.


    W. Lehmann, Das Abzähltheorem der Exponentialgruppe in gewichteter Form (in German), Mitt. Math. Sem. Giessen, 112 (1974), 19-33.


    W. Lehmann, "Ein vereinheitlichender Ansatz für die REDFIELD - PÓLYA - de BRUIJNSCHE Abzähltheorie,'' Ph.D thesis, Universität Giessen, 1976.


    G. E. Séguin, The algebraic structure of codes invariant under a permutation, in "Information Theory and Applications, II,'' Springer, Berlin, (1996), 1-18.


    D. Slepian, Some further theory of group codes, Bell Sys. Techn. J., 39 (1960), 1219-1252.


    D. Slepian, Some further theory of group codes, in "Algebraic Coding Theory: History and Development'' (ed. I.F. Blake), Stroudsbourg, Dowden, Hutchinson & Ross, Inc., (1973), 118-151.

  • 加载中

Article Metrics

HTML views() PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint