-
Previous Article
On the degrees of freedom of Costas permutations and other constraints
- AMC Home
- This Issue
-
Next Article
Some new distance-4 constant weight codes
$\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography
1. | Department of Computer Science and Multimedia, Universitat Oberta de Catalunya, 08018-Barcelona, Spain |
2. | Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain |
References:
[1] |
J. Bierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography, in "Trans. on Data Hiding and Multimedia Security III,'' (2008), 1-22. |
[2] |
J. Borges and J. Rifà, A characterization of 1-perfect additive codes, IEEE Trans. Inform. Theory, 45 (1999), 1688-1697.
doi: 10.1109/18.771247. |
[3] |
R. Crandall, Some notes on steganography, available from http://www.dia.unisa.it/~ads/corso-security/www/CORSO-0203/steganografia/LINKS%20LOCALI/matrix-encoding.pdf, 1998. |
[4] |
J. Fridrich and P. Lisoněk, Grid colorings in steganography, IEEE Trans. Inform. Theory, 53 (2007), 1547-1549.
doi: 10.1109/TIT.2007.892768. |
[5] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Company, 1977. |
[6] |
P. Moulin and R. Koetter, Data-hiding codes, Proc. IEEE, 93 (2005), 2083-2126.
doi: 10.1109/JPROC.2005.859599. |
[7] |
H. Rifà-Pous and J. Rifà, Product perfect codes and steganography, Digit. Signal Process., 19 (2009), 764-769.
doi: 10.1016/j.dsp.2008.11.005. |
[8] |
B. Ryabko and D. Ryabko, Asymptotically optimal perfect steganographic systems, Probl. Inform. Transm., 45 (2009), 184-190.
doi: 10.1134/S0032946009020094. |
[9] |
A. Westfeld, High capacity despite better steganalysis (F5 - A steganographic algorithm), Lecture Notes in Comput. Sci., 2137 (2001), 289-302.
doi: 10.1007/3-540-45496-9_21. |
[10] |
F. M. J. Willems and M. van Dijk, Capacity and codes for embedding information in grayscale signals, IEEE Trans. Inform. Theory, 51 (2005), 1209-1214.
doi: 10.1109/TIT.2004.842707. |
show all references
References:
[1] |
J. Bierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography, in "Trans. on Data Hiding and Multimedia Security III,'' (2008), 1-22. |
[2] |
J. Borges and J. Rifà, A characterization of 1-perfect additive codes, IEEE Trans. Inform. Theory, 45 (1999), 1688-1697.
doi: 10.1109/18.771247. |
[3] |
R. Crandall, Some notes on steganography, available from http://www.dia.unisa.it/~ads/corso-security/www/CORSO-0203/steganografia/LINKS%20LOCALI/matrix-encoding.pdf, 1998. |
[4] |
J. Fridrich and P. Lisoněk, Grid colorings in steganography, IEEE Trans. Inform. Theory, 53 (2007), 1547-1549.
doi: 10.1109/TIT.2007.892768. |
[5] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Company, 1977. |
[6] |
P. Moulin and R. Koetter, Data-hiding codes, Proc. IEEE, 93 (2005), 2083-2126.
doi: 10.1109/JPROC.2005.859599. |
[7] |
H. Rifà-Pous and J. Rifà, Product perfect codes and steganography, Digit. Signal Process., 19 (2009), 764-769.
doi: 10.1016/j.dsp.2008.11.005. |
[8] |
B. Ryabko and D. Ryabko, Asymptotically optimal perfect steganographic systems, Probl. Inform. Transm., 45 (2009), 184-190.
doi: 10.1134/S0032946009020094. |
[9] |
A. Westfeld, High capacity despite better steganalysis (F5 - A steganographic algorithm), Lecture Notes in Comput. Sci., 2137 (2001), 289-302.
doi: 10.1007/3-540-45496-9_21. |
[10] |
F. M. J. Willems and M. van Dijk, Capacity and codes for embedding information in grayscale signals, IEEE Trans. Inform. Theory, 51 (2005), 1209-1214.
doi: 10.1109/TIT.2004.842707. |
[1] |
Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038 |
[2] |
Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094 |
[3] |
Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé. On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022017 |
[4] |
Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054 |
[5] |
Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287 |
[6] |
Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021046 |
[7] |
Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245 |
[8] |
Hengming Zhao, Rongcun Qin, Dianhua Wu. Balanced ($\mathbb{Z} _{2u}\times \mathbb{Z}_{38v}$, {3, 4, 5}, 1) difference packings and related codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022008 |
[9] |
Amit Sharma, Maheshanand Bhaintwal. A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation. Advances in Mathematics of Communications, 2018, 12 (4) : 723-739. doi: 10.3934/amc.2018043 |
[10] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[11] |
Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029 |
[12] |
Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 |
[13] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[14] |
Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035 |
[15] |
Andrew James Bruce, Janusz Grabowski. Symplectic $ {\mathbb Z}_2^n $-manifolds. Journal of Geometric Mechanics, 2021, 13 (3) : 285-311. doi: 10.3934/jgm.2021020 |
[16] |
Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1 |
[17] |
Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571 |
[18] |
Sébastien Labbé. Rauzy induction of polygon partitions and toral $ \mathbb{Z}^2 $-rotations. Journal of Modern Dynamics, 2021, 17: 481-528. doi: 10.3934/jmd.2021017 |
[19] |
Evangeline P. Bautista, Philippe Gaborit, Jon-Lark Kim, Judy L. Walker. s-extremal additive $\mathbb F_4$ codes. Advances in Mathematics of Communications, 2007, 1 (1) : 111-130. doi: 10.3934/amc.2007.1.111 |
[20] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]