-
Previous Article
On linear equivalence and Phelps codes. Addendum
- AMC Home
- This Issue
-
Next Article
New nearly optimal codebooks from relative difference sets
Optimal batch codes: Many items or low retrieval requirement
1. | Department of Computer Science and Systems Technology, University of Pannonia, Egyetem u. 10, Veszprém, H-8200, Hungary |
2. | Computer and Automation Institute, Hungarian Academy of Sciences, Kende u. 13-17, Budapest, H-1111, Hungary |
We prove $N(n,k,m)= (k-1)n- \lfloor \frac{(k-1){m \choose k-1}-n}{m-k+1} \rfloor$ for all ${m\choose k-2} \le n \le (k-1){m\choose k-1}$. Together with the results of Paterson et al. for $n$ larger, this completes the determination of $N(n,3,m)$. We also compute $N(n,4,m)$ in the entire range $n\ge m\ge 4$. Several types of code transformations keeping optimality are described, too.
References:
[1] | |
[2] |
S. Bhattacharya, S. Ruj and B. Roy, Combinatorial batch codes: A lower bound and optimal constructions,, preprint, ().
|
[3] |
R. A. Brualdi, K. P. Kiernan, S. A. Meyer and M. W. Schroeder, Combinatorial batch codes and transversal matroids, Adv. Math. Commun., 4 (2010), 419-431; Corrigendum, Adv. Math. Commun., 4 (2010), 597 pp. |
[4] |
Cs. Bujtás and Zs. Tuza, Combinatorial batch codes: Extremal problems under Hall-type conditions, Electronic Notes Discrete Math., (2011), to appear. |
[5] |
Cs. Bujtás and Zs. Tuza, Optimal combinatorial batch codes derived from dual systems, Miskolc Math. Notes (2011), to appear. |
[6] |
Y. Ishai, E. Kushiletitz, R. Ostrovsky and A. Sahai, Batch codes and their applications, in "Proceedings of the 36th Annual ACM Symposium on Theory of Computing,'' ACM Press, New York, (2004), 262-271. |
[7] |
M. B. Paterson, D. R. Stinson and R. Wei, Combinatorial batch codes, Adv. Math. Commun., 3 (2009), 13-27.
doi: 10.3934/amc.2009.3.13. |
show all references
References:
[1] | |
[2] |
S. Bhattacharya, S. Ruj and B. Roy, Combinatorial batch codes: A lower bound and optimal constructions,, preprint, ().
|
[3] |
R. A. Brualdi, K. P. Kiernan, S. A. Meyer and M. W. Schroeder, Combinatorial batch codes and transversal matroids, Adv. Math. Commun., 4 (2010), 419-431; Corrigendum, Adv. Math. Commun., 4 (2010), 597 pp. |
[4] |
Cs. Bujtás and Zs. Tuza, Combinatorial batch codes: Extremal problems under Hall-type conditions, Electronic Notes Discrete Math., (2011), to appear. |
[5] |
Cs. Bujtás and Zs. Tuza, Optimal combinatorial batch codes derived from dual systems, Miskolc Math. Notes (2011), to appear. |
[6] |
Y. Ishai, E. Kushiletitz, R. Ostrovsky and A. Sahai, Batch codes and their applications, in "Proceedings of the 36th Annual ACM Symposium on Theory of Computing,'' ACM Press, New York, (2004), 262-271. |
[7] |
M. B. Paterson, D. R. Stinson and R. Wei, Combinatorial batch codes, Adv. Math. Commun., 3 (2009), 13-27.
doi: 10.3934/amc.2009.3.13. |
[1] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[2] |
Tao Jiang, Liwei Liu. Analysis of a batch service multi-server polling system with dynamic service control. Journal of Industrial and Management Optimization, 2018, 14 (2) : 743-757. doi: 10.3934/jimo.2017073 |
[3] |
Chongyang Liu, Zhaohua Gong, Enmin Feng, Hongchao Yin. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial and Management Optimization, 2009, 5 (4) : 835-850. doi: 10.3934/jimo.2009.5.835 |
[4] |
Omer Faruk Yilmaz, Mehmet Bulent Durmusoglu. A performance comparison and evaluation of metaheuristics for a batch scheduling problem in a multi-hybrid cell manufacturing system with skilled workforce assignment. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1219-1249. doi: 10.3934/jimo.2018007 |
[5] |
Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369 |
[6] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
[7] |
Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 |
[8] |
Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial and Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167 |
[9] |
M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281 |
[10] |
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 |
[11] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[12] |
Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 491-504. doi: 10.3934/naco.2016022 |
[13] |
Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759 |
[14] |
María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021018 |
[15] |
Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 |
[16] |
Zhongming Chen, Liqun Qi. Circulant tensors with applications to spectral hypergraph theory and stochastic process. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1227-1247. doi: 10.3934/jimo.2016.12.1227 |
[17] |
Jean-Marc Hérard, Olivier Hurisse. Some attempts to couple distinct fluid models. Networks and Heterogeneous Media, 2010, 5 (3) : 649-660. doi: 10.3934/nhm.2010.5.649 |
[18] |
Johan Chrisnata, Han Mao Kiah, Sankeerth Rao Karingula, Alexander Vardy, Eitan Yaakobi Yao, Hanwen Yao. On the number of distinct k-decks: Enumeration and bounds. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021032 |
[19] |
Thomas Feulner. The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Advances in Mathematics of Communications, 2009, 3 (4) : 363-383. doi: 10.3934/amc.2009.3.363 |
[20] |
Anton Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials. Journal of Modern Dynamics, 2008, 2 (1) : 139-185. doi: 10.3934/jmd.2008.2.139 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]