August  2011, 5(3): 547-553. doi: 10.3934/amc.2011.5.547

Results of the enumeration of Costas arrays of order 29

1. 

School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4

2. 

Autodesk Research, 210 King Street East, Toronto, Ontario M5A 1J7

3. 

Department of Computer Science, Trinity College Dublin, College Green, Dublin 2, Ireland

Received  January 2011 Published  August 2011

The results of the enumeration of Costas arrays of order 29 are presented: except for 16 arrays out of a total of 164, all other arrays found are accounted for by the Golomb and Welch construction methods. These 16 arrays, however, cannot be considered to be new, as they were discovered in the past through a semi-empirical technique. The enumeration was performed on several computer clusters and required the equivalent of 366.55 years of single CPU time.
Citation: Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547
References:
[1]

J. P. Costas, Medium constraints on SONAR design and performance, in "Technical Report Class 1 Rep. R65EMH33,'' GE Co., 1965; A synopsis of this report appeared in the EASCON Convention Record, (1975), 68A-68L.

[2]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties, Proc. IEEE, 72 (1984), 996-1009. doi: 10.1109/PROC.1984.12967.

[3]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 (). 

[4]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28 and its consequences, Adv. Math. Commun., 5 (2011), 69-86. doi: 10.3934/amc.2011.5.69.

[5]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27, IEEE Trans. Inform. Theory, 54 (2008), 4684-4687. doi: 10.1109/TIT.2008.928979.

[6]

S. W. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3.

[7]

S. W. Golomb, The $T_4$ and $G_4$ constructions for Costas arrays, IEEE Trans. Inform. Theory, 38 (1992), 1404-1406. doi: 10.1109/18.144726.

[8]

S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays, Proc. IEEE, 72 (1984), 1143-1163. doi: 10.1109/PROC.1984.12994.

[9]

S. Rickard, Searching for Costas arrays using periodicity properties, in "IMA International Conference on Mathematics in Signal Processing at The Royal Agricultural College,'' Cirencester, UK, 2004.

show all references

References:
[1]

J. P. Costas, Medium constraints on SONAR design and performance, in "Technical Report Class 1 Rep. R65EMH33,'' GE Co., 1965; A synopsis of this report appeared in the EASCON Convention Record, (1975), 68A-68L.

[2]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties, Proc. IEEE, 72 (1984), 996-1009. doi: 10.1109/PROC.1984.12967.

[3]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 (). 

[4]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28 and its consequences, Adv. Math. Commun., 5 (2011), 69-86. doi: 10.3934/amc.2011.5.69.

[5]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27, IEEE Trans. Inform. Theory, 54 (2008), 4684-4687. doi: 10.1109/TIT.2008.928979.

[6]

S. W. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3.

[7]

S. W. Golomb, The $T_4$ and $G_4$ constructions for Costas arrays, IEEE Trans. Inform. Theory, 38 (1992), 1404-1406. doi: 10.1109/18.144726.

[8]

S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays, Proc. IEEE, 72 (1984), 1143-1163. doi: 10.1109/PROC.1984.12994.

[9]

S. Rickard, Searching for Costas arrays using periodicity properties, in "IMA International Conference on Mathematics in Signal Processing at The Royal Agricultural College,'' Cirencester, UK, 2004.

[1]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69

[2]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[3]

Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241

[4]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[5]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[6]

Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321

[7]

Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic and Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417

[8]

Min Tang. Second order all speed method for the isentropic Euler equations. Kinetic and Related Models, 2012, 5 (1) : 155-184. doi: 10.3934/krm.2012.5.155

[9]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[10]

Yong Li, Catalin Trenchea. Partitioned second order method for magnetohydrodynamics in Elsässer variables. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2803-2823. doi: 10.3934/dcdsb.2018106

[11]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[12]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[13]

Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022066

[14]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[15]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[16]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[17]

Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems and Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016

[18]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic and Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[19]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[20]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (13)

[Back to Top]