\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes

Abstract Related Papers Cited by
  • The generalized Gray map is defined for codes over $\mathbb{Z}_{2^k}$. We give bounds for the dimension of the kernel and the rank of the image of a code over $\mathbb{Z}_{2^k}$ with a given type and show that there exists such a code for each dimension in the interval for the kernel. We determine when the Gray image of a code over $\mathbb{Z}_{2^k}$ generates a linear self-dual code and give families of codes whose image generate binary self-dual codes. We investigate the Gray image of quaternary self-dual codes and examine when the Gray image of a self-dual code over $\mathbb{Z}_4$ is a binary self-dual code.
    Mathematics Subject Classification: Primary: 94B25, 94B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.doi: 10.1109/18.761269.

    [2]

    M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$, Designs Codes Crypt., 61 (2011), 31-40.doi: 10.1007/s10623-010-9437-1.

    [3]

    J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code, in "COMB'01. Electronic Notes in Discrete Mathematics,'' 10 (2001), Elsevier Science.

    [4]

    J. Borges, C. Fernández and J. RifàPropelinear structure of $\mathbbZ$2k-linear codes, preprint, arXiv:0907.5287

    [5]

    C. Carlet, $\mathbbZ$2k-linear codes, IEEE Trans. Inform. Theory, 44 (1998), 1543-1547.doi: 10.1109/18.681328.

    [6]

    J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A, 62 (1993), 30-45.doi: 10.1016/0097-3165(93)90070-O.

    [7]

    S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$, Finite Fields Appl., 7 (2001), 507-529.doi: 10.1006/ffta.2000.0312.

    [8]

    S. T. Dougherty and H. Liu, Independence of vectors in codes over rings, Designs Codes Crypt., 51 (2009), 55-68.doi: 10.1007/s10623-008-9243-1.

    [9]

    C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes, in "Code Theory and Applications,'' Springer, (2008), 46-55.

    [10]

    C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel, Designs Codes Crypt., 56 (2010), 43-59.doi: 10.1007/s10623-009-9340-9.

    [11]

    A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154.

    [12]

    M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4, Arch. Math., 53 (1989), 201-207.doi: 10.1007/BF01198572.

    [13]

    F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, 1977.

    [14]

    Y. H. Park, Modular independence and generator matrices for codes over $Z_m$, Designs Codes Crypt., 50 (2009), 147-162.doi: 10.1007/s10623-008-9220-8.

    [15]

    V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'' North-Holland, 1998.

    [16]

    E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (edited by V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294.

    [17]

    K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$, Linear Algebra Appl. 295 (1999), 191-200.doi: 10.1016/S0024-3795(99)00125-1.

    [18]

    H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes, SIAM J. Discrete Math., 17 (2003), 103-113.doi: 10.1137/S0895480101397219.

    [19]

    Z.-X. Wan, "Quaternary Codes,'' World Scientific, 1997.doi: 10.1142/9789812798121.

    [20]

    J. Wood, Duality for modules over finite rings and applications to coding theory, American J. Math., 121 (1999), 555-575.doi: 10.1353/ajm.1999.0024.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(402) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return