Article Contents
Article Contents

On some classes of constacyclic codes over polynomial residue rings

• The polynomial residue ring $\mathcal R_a=\frac{\mathbb F_{2^m}[u]}{\langle u^a \rangle}=\mathbb F_{2^m} + u \mathbb F_{2^m}+ \dots + u^{a - 1}\mathbb F_{2^m}$ is a chain ring with residue field $\mathbb F_{2^m}$, that contains precisely $(2^m-1)2^{m(a-1)}$ units, namely, $\alpha_0+u\alpha_1+\dots+u^{a-1}\alpha_{a-1}$, where $\alpha_0,\alpha_1,\dots,\alpha_{a-1} \in \mathbb F_{2^m}$, $\alpha_0 \neq 0$. Two classes of units of $\mathcal R_a$ are considered, namely, $\lambda=1+u\lambda_1+\dots+u^{a-1}\lambda_{a-1}$, where $\lambda_1, \dots, \lambda_{a-1} \in \mathbb F_{2^m}$, $\lambda_1 \neq 0$; and $\Lambda=\Lambda_0+u\Lambda_1+\dots+u^{a-1}\Lambda_{a-1}$, where $\Lambda_0, \Lambda_1, \dots, \Lambda_{a-1} \in \mathbb F_{2^m}$, $\Lambda_0 \neq 0, \Lambda_1 \neq 0$. Among other results, the structure, Hamming and homogeneous distances of $\Lambda$-constacyclic codes of length $2^s$ over $\mathcal R_a$, and the structure of $\lambda$-constacyclic codes of any length over $\mathcal R_a$ are established.
Mathematics Subject Classification: Primary: 94B15; Secondary: 12Y05.

 Citation:

•  [1] T. Abualrub, A. Ghrayeb and R. Oehmke, A mass formula and rank of $\mathbb Z_4$ cyclic codes of length $2^e$, IEEE Trans. Inform. Theory, 50 (2004), 3306-3312.doi: 10.1109/TIT.2004.838109. [2] R. Alfaro, S. Bennett, J. Harvey and C. Thornburg, On distances and self-dual codes over $F_q[u]$/$(u^t)$, Involve, 2 (2009), 177-194.doi: 10.2140/involve.2009.2.177. [3] S. D. Berman, Semisimple cyclic and Abelian codes. II (in Russian), Kibernetika, 3 (1967), 21-30; English translation: Cybernetics, 3 (1967), 17-23.doi: 10.1007/BF01119999. [4] T. Blackford, Negacyclic codes over $\mathbb Z_4$ of even length, IEEE Trans. Inform. Theory, 49 (2003), 1417-1424.doi: 10.1109/TIT.2003.811915. [5] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255.doi: 10.1109/18.761278. [6] A. Bonnecaze and P. Udaya, Decoding of cyclic codes over $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 45 (1999), 2148-2157.doi: 10.1109/18.782165. [7] A. R. Calderbank, A. R. Hammons, Jr., P. V. Kumar, N. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. AMS, 29 (1993), 218-222. [8] G. Castagnoli, J. L. Massey, P. A. Schoeller and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inform. Theory, 37 (1991), 337-342.doi: 10.1109/18.75249. [9] I. Constaninescu, "Lineare Codes über Restklassenringen ganzer Zahlen und ihre Automorphismen bezüglich einer verallgemeinerten Hamming-Metrik'' (in German), Ph.D thesis, Technische Universität, München, Germany, 1995. [10] I. Constaninescu and W. Heise, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii, 33 (1997), 22-28. [11] I. Constaninescu, W. Heise and T. Honold, Monomial extensions of isometries between codes over $\mathbb Z_m$, in "Proceedings of the 5th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT'96),'' Unicorn Shumen, (1996), 98-104. [12] H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory, 51 (2005), 4252-4262.doi: 10.1109/TIT.2005.859284. [13] H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40.doi: 10.1016/j.ffa.2007.07.001. [14] H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.doi: 10.1109/TIT.2009.2013015. [15] H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$, J. Algebra, 324 (2010), 940-950.doi: 10.1016/j.jalgebra.2010.05.027. [16] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.doi: 10.1109/TIT.2004.831789. [17] S. Dougherty, P. Gaborit, M. Harada and P. Solé, Type II codes over $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.doi: 10.1109/18.746770. [18] G. Falkner, B. Kowol, W. Heise and E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena, 28 (1979), 326-341. [19] M. Greferath and S. E. Schmidt, Gray Isometries for Finite Chain Rings and a Nonlinear Ternary $(36, 3^{12}, 15)$ Code, IEEE Trans. Inform. Theory, 45 (1999), 2522-2524.doi: 10.1109/18.796395. [20] M. Greferath and S. E. Schmidt, Finite ring combinatorics and MacWilliams's equivalence theorem, J. Combin. Theory Ser. A, 92 (2000), 17-28.doi: 10.1006/jcta.1999.3033. [21] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154. [22] W. Heise, T. Honold and A. A. Nechaev, Weighted modules and representations of codes, in "Proceedings of the ACCT 6,'' Pskov, Russia, (1998), 123-129. [23] T. Honold and I. Landjev, Linear representable codes over chain rings, in "Proceedings of the ACCT 6,'' Pskov, Russia, (1998), 135-141. [24] W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge University Press, Cambridge, 2003. [25] S. Ling and P. Solé, Duadic codes over $\mathbb F_2+u\mathbb F_2$, Appl. Algebra Engrg. Comm. Comput., 12 (2001), 365-379.doi: 10.1007/s002000100079. [26] F. J. MacWilliams, Error-correcting codes for multiple-level transmissions, Bell System Tech. J., 40 (1961), 281-308. [27] F. J. MacWilliams, Combinatorial problems of elementary abelian groups, Ph.D thesis, Harvard University, Cambridge, MA, 1962. [28] J. L. Massey, D. J. Costello and J. Justesen, Polynomial weights and code constructions, IEEE Trans. Inform. Theory, 19 (1973), 101-110.doi: 10.1109/TIT.1973.1054936. [29] B. R. McDonald, "Finite Rings with Identity,'' Marcel Dekker, New York, 1974. [30] A. A. Nechaev, Kerdock code in a cyclic form (in Russian), Diskr. Math. (USSR), 1 (1989), 123-139; English translation: Discrete Math. Appl., 1 (1991), 365-384.doi: 10.1515/dma.1991.1.4.365. [31] C.-S. Nedeloaia, Weight distributions of cyclic self-dual codes, IEEE Trans. Inform. Theory, 49 (2003), 1582-1591.doi: 10.1109/TIT.2003.811921. [32] G. Norton and A. Sălăgean-Mandache, On the structure of linear cyclic codes over finite chain rings, Appl. Algebra Engrg. Comm. Comput., 10 (2000), 489-506.doi: 10.1007/PL00012382. [33] M. Ozen and I. Siap, Linear codes over $\mathbb F_q[u]$/$(u^s)$ with respect to the osenbloom-Tsffasman metric, Des. Codes Cryptogr., 38 (2006), 17-29.doi: 10.1007/s10623-004-5658-5. [34] V. Pless and W. C. Huffman, "Handbook of Coding Theory,'' Elsevier, Amsterdam, 1998. [35] R. M. Roth and G. Seroussi, On cyclic MDS codes of length $q$ over $\GF(q)$, IEEE Trans. Inform. Theory, 32 (1986), 284-285.doi: 10.1109/TIT.1986.1057151. [36] A. Sălăgean, Repeated-root cyclic and negacyclic codes over finite chain rings, Discrete Appl. Math., 154 (2006), 413-419.doi: 10.1016/j.dam.2005.03.016. [37] L.-Z. Tang, C. B. Soh and E. Gunawan, A note on the $q$-ary image of a $q^m$-ary repeated-root cyclic code, IEEE Trans. Inform. Theory, 43 (1997), 732-737.doi: 10.1109/18.556131. [38] J. H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory, 37 (1991), 343-345.doi: 10.1109/18.75250. [39] J. A. Wood, Duality for modules over finite rings and applications to coding theory, American J. Math., 121 (1999), 555-575.doi: 10.1353/ajm.1999.0024. [40] K.-H. Zimmermann, On generalizations of repeated-root cyclic codes, IEEE Trans. Inform. Theory, 42 (1996), 641-649.doi: 10.1109/18.485736.