-
Previous Article
Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$
- AMC Home
- This Issue
-
Next Article
List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes
Wet paper codes and the dual distance in steganography
1. | Department of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47014 Valladolid, Castilla |
2. | Computer Science Laboratory, École Polytechnique, 91 128 Palaiseau CEDEX, INRIA Saclay, ÎIle de France |
References:
[1] |
D. Augot, M. Barbier and C. Fontaine, Ensuring message embedding in wet paper steganography, in "Transactions on Thirteenth IMA International Conference on Cryptography and Coding,'' Springer-Verlag, Berlin, Heidelberg, (2011), 244-258. |
[2] |
J. Brierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography, in "Transactions on Data Hiding and Multimedia Security III,'' Springer-Verlag, (2008), 1-22.
doi: 10.1007/978-3-540-69019-1_1. |
[3] |
F. Chai, X. S. Gao and C. Yuan, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers, J. Sys. Sci. Compl., 21 (2008), 191-208.
doi: 10.1007/s11424-008-9103-0. |
[4] |
C. Cooper, On the rank of random matrices, Random Struc. Algor., 16 (2000), 209-232.
doi: 10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1. |
[5] |
R. Crandall, Some notes on steganography, http://os.inf.tu-dresden.de/ westfeld |
[6] |
C. Fontaine and F. Galand, How Reed-Solomon codes can improve steganographic schemes, in "Information Hiding 9th International Workshop,'' Springer-Verlag, (2007), 130-144. |
[7] |
J. Fridrich, M. Goljan, P. Lisonek and D. Soukal, Writing on wet paper, IEEE Trans. Signal Proc., 53 (2005), 3923-3935.
doi: 10.1109/TSP.2005.855393. |
[8] |
J. Fridrich, M. Goljan and D. Soukal, Efficient wet paper codes, in "Proceedings of Information Hiding,'' Springer-Verlag, 2005.
doi: 10.1007/b104759. |
[9] |
J. Fridrich, M. Goljan and D. Soukal, Steganography via codes for memory with defective cells, in "Proceedings of the Forty-Third Annual Allerton Conference On Communication, Control and Computing,'' (2005), 1521-1538. |
[10] |
J. Fridrich, M. Goljan and D. Soukal, Wet paper codes with improved embedding efficiency, IEEE Trans. Inform. Forens. Secur., 1 (2006), 102-110.
doi: 10.1109/TIFS.2005.863487. |
[11] |
B. J. Hamilton, SINCGARS system improvement program (SIP) specific radio improvement, in "Proceedings of 1996 Tactical Communications Conference,'' (1996), 397-406. |
[12] |
R. W. Hamming, "The Art of Probability for Scientists and Engineers,'' Westview Press, New York, 1994. |
[13] |
A. S. Hedayat, N. J. A. Sloane and J. Stufken, "Orthogonal Arrays: Theory and Applications,'' Springer-Verlag, New York, 1999. |
[14] |
M. Keinänen, "Techniques for Solving Boolean Equation Systems,'' Ph.D thesis, Espoo, Finland, 2006. |
[15] |
V. F. Kolchin, "Random Graphs,'' Cambridge University Press, Cambridge, 1999. |
[16] |
F. J. MacWilliams and N. J. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977. |
[17] |
MinT, Online database for optimal parameters of $(t, m, s)$-nets, $(t, s)$-sequences, orthogonal arrays, linear codes, and OOAs, available at http://mint.sbg.ac.at/ |
[18] |
C. Munuera, On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 2092-2099.
doi: 10.1109/18.340488. |
[19] |
M. Nadler, A 32-point $n=12$, $d=5$ code, IRE Trans. Inform. Theory, 8 (1962), 58.
doi: 10.1109/TIT.1962.1057670. |
[20] |
D. Schönfeld and A. Winkler, Embedding with syndrome coding based on BCH codes, in "Proceedings 8th ACM Workshop on Multimedia and Security,'' (2006), 214-223. |
[21] |
D. Schönfeld and A. Winkler, Reducing the complexity of syndrome coding for embedding, in "Proceedings 10th ACM Workshop on Information Hiding,'' Springer-Verlag, (2007), 145-158. |
[22] |
B.-Z. Shen, A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate, IEEE Trans. Inform. Theory, 39 (1993), 239-242.
doi: 10.1109/18.179365. |
[23] |
D. Stinson, Resilient functions and large sets of orthogonal arrays, Congressus Numerantium, 92 (1993), 105-110. |
[24] |
C. Studholme and I. F. Blake, Random matrices and codes for the erasure channel, Algoritmica, 56 (2010), 605-620.
doi: 10.1007/s00453-008-9192-0. |
[25] |
J. H. van Lint, A new description of the Nadler code, IEEE Trans. Inform. Theory, 18 (1972), 825-826.
doi: 10.1109/TIT.1972.1054904. |
[26] |
J. H. van Lint, "Introduction to Coding Theory,'' Springer-Verlag, New York, 1982. |
[27] |
V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259. |
[28] |
W. Zhang, X. Zhang and S. Wang, Maximizing embedding efficiency by combining Hamming codes and wet paper codes, in "Proceedings 10th International Workshop on Information Hiding,'' Springer-Verlag, (2008), 60-71. |
show all references
References:
[1] |
D. Augot, M. Barbier and C. Fontaine, Ensuring message embedding in wet paper steganography, in "Transactions on Thirteenth IMA International Conference on Cryptography and Coding,'' Springer-Verlag, Berlin, Heidelberg, (2011), 244-258. |
[2] |
J. Brierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography, in "Transactions on Data Hiding and Multimedia Security III,'' Springer-Verlag, (2008), 1-22.
doi: 10.1007/978-3-540-69019-1_1. |
[3] |
F. Chai, X. S. Gao and C. Yuan, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers, J. Sys. Sci. Compl., 21 (2008), 191-208.
doi: 10.1007/s11424-008-9103-0. |
[4] |
C. Cooper, On the rank of random matrices, Random Struc. Algor., 16 (2000), 209-232.
doi: 10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1. |
[5] |
R. Crandall, Some notes on steganography, http://os.inf.tu-dresden.de/ westfeld |
[6] |
C. Fontaine and F. Galand, How Reed-Solomon codes can improve steganographic schemes, in "Information Hiding 9th International Workshop,'' Springer-Verlag, (2007), 130-144. |
[7] |
J. Fridrich, M. Goljan, P. Lisonek and D. Soukal, Writing on wet paper, IEEE Trans. Signal Proc., 53 (2005), 3923-3935.
doi: 10.1109/TSP.2005.855393. |
[8] |
J. Fridrich, M. Goljan and D. Soukal, Efficient wet paper codes, in "Proceedings of Information Hiding,'' Springer-Verlag, 2005.
doi: 10.1007/b104759. |
[9] |
J. Fridrich, M. Goljan and D. Soukal, Steganography via codes for memory with defective cells, in "Proceedings of the Forty-Third Annual Allerton Conference On Communication, Control and Computing,'' (2005), 1521-1538. |
[10] |
J. Fridrich, M. Goljan and D. Soukal, Wet paper codes with improved embedding efficiency, IEEE Trans. Inform. Forens. Secur., 1 (2006), 102-110.
doi: 10.1109/TIFS.2005.863487. |
[11] |
B. J. Hamilton, SINCGARS system improvement program (SIP) specific radio improvement, in "Proceedings of 1996 Tactical Communications Conference,'' (1996), 397-406. |
[12] |
R. W. Hamming, "The Art of Probability for Scientists and Engineers,'' Westview Press, New York, 1994. |
[13] |
A. S. Hedayat, N. J. A. Sloane and J. Stufken, "Orthogonal Arrays: Theory and Applications,'' Springer-Verlag, New York, 1999. |
[14] |
M. Keinänen, "Techniques for Solving Boolean Equation Systems,'' Ph.D thesis, Espoo, Finland, 2006. |
[15] |
V. F. Kolchin, "Random Graphs,'' Cambridge University Press, Cambridge, 1999. |
[16] |
F. J. MacWilliams and N. J. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977. |
[17] |
MinT, Online database for optimal parameters of $(t, m, s)$-nets, $(t, s)$-sequences, orthogonal arrays, linear codes, and OOAs, available at http://mint.sbg.ac.at/ |
[18] |
C. Munuera, On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 2092-2099.
doi: 10.1109/18.340488. |
[19] |
M. Nadler, A 32-point $n=12$, $d=5$ code, IRE Trans. Inform. Theory, 8 (1962), 58.
doi: 10.1109/TIT.1962.1057670. |
[20] |
D. Schönfeld and A. Winkler, Embedding with syndrome coding based on BCH codes, in "Proceedings 8th ACM Workshop on Multimedia and Security,'' (2006), 214-223. |
[21] |
D. Schönfeld and A. Winkler, Reducing the complexity of syndrome coding for embedding, in "Proceedings 10th ACM Workshop on Information Hiding,'' Springer-Verlag, (2007), 145-158. |
[22] |
B.-Z. Shen, A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate, IEEE Trans. Inform. Theory, 39 (1993), 239-242.
doi: 10.1109/18.179365. |
[23] |
D. Stinson, Resilient functions and large sets of orthogonal arrays, Congressus Numerantium, 92 (1993), 105-110. |
[24] |
C. Studholme and I. F. Blake, Random matrices and codes for the erasure channel, Algoritmica, 56 (2010), 605-620.
doi: 10.1007/s00453-008-9192-0. |
[25] |
J. H. van Lint, A new description of the Nadler code, IEEE Trans. Inform. Theory, 18 (1972), 825-826.
doi: 10.1109/TIT.1972.1054904. |
[26] |
J. H. van Lint, "Introduction to Coding Theory,'' Springer-Verlag, New York, 1982. |
[27] |
V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259. |
[28] |
W. Zhang, X. Zhang and S. Wang, Maximizing embedding efficiency by combining Hamming codes and wet paper codes, in "Proceedings 10th International Workshop on Information Hiding,'' Springer-Verlag, (2008), 60-71. |
[1] |
Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83 |
[2] |
Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889 |
[3] |
Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078 |
[4] |
René B. Christensen, Carlos Munuera, Francisco R. F. Pereira, Diego Ruano. An algorithmic approach to entanglement-assisted quantum error-correcting codes from the Hermitian curve. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021072 |
[5] |
José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149 |
[6] |
María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021018 |
[7] |
Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 |
[8] |
Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275 |
[9] |
Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 |
[10] |
Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 |
[11] |
Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 |
[12] |
M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281 |
[13] |
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 |
[14] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[15] |
Andrea Seidl, Stefan Wrzaczek. Opening the source code: The threat of forking. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022010 |
[16] |
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 |
[17] |
Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 |
[18] |
Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 |
[19] |
M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407 |
[20] |
Jorge P. Arpasi. On the non-Abelian group code capacity of memoryless channels. Advances in Mathematics of Communications, 2020, 14 (3) : 423-436. doi: 10.3934/amc.2020058 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]