-
Previous Article
Secondary constructions of bent functions and their enforcement
- AMC Home
- This Issue
-
Next Article
Wet paper codes and the dual distance in steganography
Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$
1. | Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain |
2. | Department of Mathematics, University of Scranton, Scranton, PA 18510, United States |
References:
[1] |
C. Bachoc and P. Gaborit, On extremal additive $\mathbb F_4$ codes of length $10$ to $18$, J. Théorie Nombres Bordeaux, 12 (2000), 255-271. |
[2] |
J. Bierbrauer, "Introduction to Coding Theory,'' Chapman & Hall/CRC, 2005. |
[3] |
A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161-167.
doi: 10.1016/S0195-6698(03)00096-9. |
[4] |
J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, On $\mathbb Z_2\mathbb Z_4$-linear codes and duality, in "Fifth Conference on Discrete Mathematics and Computer Science (Spanish),'' (2006), 171-177. |
[5] |
J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010), 167-179.
doi: 10.1007/s10623-009-9316-9. |
[6] |
J. Borges and J. Rifà, A characterization of 1-perfect additive codes, IEEE Trans. Inform. Theory, 45 (1999), 1688-1697.
doi: 10.1109/18.771247. |
[7] |
R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-37 (1991), 1222-1225.
doi: 10.1109/18.86979. |
[8] |
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.
doi: 10.1109/18.59931. |
[9] |
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973), 97 pp. |
[10] |
P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.
doi: 10.1109/18.720545. |
[11] |
S. T. Dougherty and P. Solé, Shadows of codes and lattices, in "Proceedings of the Third Asian Mathematical Conference, 2000 (Diliman),'' World Sci. Publ., (2002), 139-152. |
[12] |
C. Fernández, J. Pujol and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: rank and kernel, Des. Codes Crypt., 56 (2010), 43-59.
doi: 10.1007/s10623-009-9340-9. |
[13] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154. |
[14] |
J.-L. Kim and V. Pless, Designs in additive codes over GF(4), Des. Codes Crypt., 30 (2003), 187-199.
doi: 10.1023/A:1025484821641. |
[15] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977. |
[16] |
K. T. Phelps and J. Rifà, On binary $1$-perfect additive codes: some structural properties, IEEE Trans. Inform. Theory, 48 (2002), 2587-2592.
doi: 10.1109/TIT.2002.801474. |
[17] |
J. Pujol and J. Rifà, Translation invariant propelinear codes, IEEE Trans. Inform. Theory, 43 (1997), 590-598.
doi: 10.1109/18.556115. |
[18] |
E. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294. |
[19] |
H. N. Ward, A restriction on the weight enumerator of a self-dual code, J. Combin. Theory Ser. A, 21 (1976), 253-255.
doi: 10.1016/0097-3165(76)90071-6. |
show all references
References:
[1] |
C. Bachoc and P. Gaborit, On extremal additive $\mathbb F_4$ codes of length $10$ to $18$, J. Théorie Nombres Bordeaux, 12 (2000), 255-271. |
[2] |
J. Bierbrauer, "Introduction to Coding Theory,'' Chapman & Hall/CRC, 2005. |
[3] |
A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161-167.
doi: 10.1016/S0195-6698(03)00096-9. |
[4] |
J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, On $\mathbb Z_2\mathbb Z_4$-linear codes and duality, in "Fifth Conference on Discrete Mathematics and Computer Science (Spanish),'' (2006), 171-177. |
[5] |
J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010), 167-179.
doi: 10.1007/s10623-009-9316-9. |
[6] |
J. Borges and J. Rifà, A characterization of 1-perfect additive codes, IEEE Trans. Inform. Theory, 45 (1999), 1688-1697.
doi: 10.1109/18.771247. |
[7] |
R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-37 (1991), 1222-1225.
doi: 10.1109/18.86979. |
[8] |
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.
doi: 10.1109/18.59931. |
[9] |
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973), 97 pp. |
[10] |
P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.
doi: 10.1109/18.720545. |
[11] |
S. T. Dougherty and P. Solé, Shadows of codes and lattices, in "Proceedings of the Third Asian Mathematical Conference, 2000 (Diliman),'' World Sci. Publ., (2002), 139-152. |
[12] |
C. Fernández, J. Pujol and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: rank and kernel, Des. Codes Crypt., 56 (2010), 43-59.
doi: 10.1007/s10623-009-9340-9. |
[13] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154. |
[14] |
J.-L. Kim and V. Pless, Designs in additive codes over GF(4), Des. Codes Crypt., 30 (2003), 187-199.
doi: 10.1023/A:1025484821641. |
[15] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977. |
[16] |
K. T. Phelps and J. Rifà, On binary $1$-perfect additive codes: some structural properties, IEEE Trans. Inform. Theory, 48 (2002), 2587-2592.
doi: 10.1109/TIT.2002.801474. |
[17] |
J. Pujol and J. Rifà, Translation invariant propelinear codes, IEEE Trans. Inform. Theory, 43 (1997), 590-598.
doi: 10.1109/18.556115. |
[18] |
E. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294. |
[19] |
H. N. Ward, A restriction on the weight enumerator of a self-dual code, J. Combin. Theory Ser. A, 21 (1976), 253-255.
doi: 10.1016/0097-3165(76)90071-6. |
[1] |
Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425 |
[2] |
Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035 |
[3] |
Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038 |
[4] |
Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571 |
[5] |
Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054 |
[6] |
Padmapani Seneviratne, Martianus Frederic Ezerman. New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021073 |
[7] |
Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094 |
[8] |
Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé. On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022017 |
[9] |
Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014 |
[10] |
W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357 |
[11] |
Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245 |
[12] |
Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021046 |
[13] |
Amit Sharma, Maheshanand Bhaintwal. A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation. Advances in Mathematics of Communications, 2018, 12 (4) : 723-739. doi: 10.3934/amc.2018043 |
[14] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[15] |
Hengming Zhao, Rongcun Qin, Dianhua Wu. Balanced ($\mathbb{Z} _{2u}\times \mathbb{Z}_{38v}$, {3, 4, 5}, 1) difference packings and related codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022008 |
[16] |
Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029 |
[17] |
Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 |
[18] |
Adrian Korban, Serap Sahinkaya, Deniz Ustun. New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022032 |
[19] |
Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040 |
[20] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]