-
Previous Article
Canonical- systematic form for codes in hierarchical poset metrics
- AMC Home
- This Issue
-
Next Article
Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$
Secondary constructions of bent functions and their enforcement
1. | LAGA, Universities of Paris 8 and Paris 13; CNRS, UMR 7539, Department of Mathematics, University of Paris 8, 2 rue de la liberté, 93526 Saint-Denis cedex 02, France |
2. | School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China, and ISN, Xidian University, Xi'an, Shannxi 710071, China |
3. | State Key Laboratory of Integrated Services Networks, Xidian university, P.O. Box 95, Taibai Road 2, Xi'an, Shannxi 710071, China |
References:
[1] |
A. Canteaut and M. Trabbia, Improved fast correlation attacks using parity-check equations of weight 4 and 5, in "EUROCRYPT 2000'' (ed. B. Preneel), Springer, (2000), 573-588.
doi: 10.1007/3-540-45539-6_40. |
[2] |
C. Carlet, Two new classes of bent functions, in "EUROCRYPT'93'' (ed. T. Helleseth), Springer, (1994), 77-101. |
[3] |
C. Carlet, Generalized partial spreads, IEEE Trans. Inform. Theory, 41 (1995), 1482-1487.
doi: 10.1109/18.412693. |
[4] |
C. Carlet, A construction of bent functions, in "Proceeding of the Third International Conference on Finite Fields and Applications'' (eds. S. Cohen and H. Niederreiter), Cambridge University Press, (1996), 47-58.
doi: 10.1017/CBO9780511525988.006. |
[5] |
C. Carlet, On the confusion and diffusion properties of Maiorana-McFarland's and extended Maiorana-McFarland's functions, J. Complexity, 20 (2004), 182-204.
doi: 10.1016/j.jco.2003.08.013. |
[6] |
C. Carlet, On the secondary constructions of resilient and bent functions, in "Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003'' (eds. K. Feng, H. Niederreiter and C. Xing), Birkhäuser Verlag, (2004), 3-28. |
[7] |
C. Carlet, On bent and highly nonlinear balanced/resilient functions and their algebaric immunities, in "AAECC 2006'' (eds. M. Fossorier et al.), Springer, (2006), 1-28. |
[8] |
C. Carlet, Boolean functions for cryptography and error correcting codes, in "Boolean Models and Methods in Mathematics, Computer Science, and Engineering'' (eds. Y. Crama and P. Hammer), Cambridge University Press, (2010), 257-397. |
[9] |
C. Carlet, H. Dobbertin and G. Leander, Normal extensions of bent functions, IEEE Trans. Inform. Theory, 50 (2004), 2880-2885.
doi: 10.1109/TIT.2004.836681. |
[10] |
J. Dillon, "Elementary Hadamard Difference Sets,'' Ph.D thesis, Univ. Maryland, College Park, 1974. |
[11] |
H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, in "Fast Software Encryption,'' Springer, (1995), 61-74.
doi: 10.1007/3-540-60590-8_5. |
[12] |
H. Dobbertin and G. Leander, Bent functions embedded into the recursive framework of $\mathbb Z$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3. |
[13] |
P. Guillo, Completed GPS covers all bent functions, J. Combin. Theory Ser. A, 93 (2001), 242-260.
doi: 10.1006/jcta.2000.3076. |
[14] |
X.-D. Hou, New constructions of bent functions, J. Combin. Inform. System Sci., 25 (2000), 173-189. |
[15] |
P. Langevin, G. Leander, P. Rabizzoni, P. Veron and J.-P. Zanotti, Classification of Boolean quartics forms in eight variables, availabel at http://langevin.univ-tln.fr/project/quartics/quartics.html |
[16] |
G. Leander, Monomial bent functions, IEEE Trans. Inform. Theory, 52 (2006), 738-743.
doi: 10.1109/TIT.2005.862121. |
[17] |
G. Leander and G. McGuire, Construction of bent functions from near-bent functions, J. Combin. Theory Ser. A, 116 (2009), 960-970.
doi: 10.1016/j.jcta.2008.12.004. |
[18] |
Q. Liu, Y. Zhang, C. Cheng and W. Lü, Construction and counting orthomorphism based on transversal, in "2008 International Conference on Computational Intelligence and Security,'' IEEE Computer Society, (2008), 369-373. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, Amsterdam, 1977. |
[20] |
R. I. McFarland, A family of difference sets in non-cyclic groups, J. Comb. Theory Ser. A, 15 (1973), 1-10.
doi: 10.1016/0097-3165(73)90031-9. |
[21] |
Q. Meng, L. Chen and F. Fu, On homogeneous rotation symmetric bent functions, Discrete Appl. Math., 158 (2010), 1111-1117.
doi: 10.1016/j.dam.2010.02.009. |
[22] |
J. D. Olsen, R. A. Scholtz and L. R. Welch, Bent-function sequence, IEEE Trans. Inform. Theory, 28 (1982), 858-864.
doi: 10.1109/TIT.1982.1056589. |
[23] |
O. S. Rothaus, On "bent'' functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[24] |
J. Wolfmann, Bent functions and coding theory, in "Difference Sets, Sequences and their Correlation Properties'' (eds. A. Pott, P.V. Kumar, T. Helleseth and D. Jungnickel), Amsterdam, Kluwer, (1999), 393-417. |
[25] |
H. Zhen, H. Zhang, T. Cui and X. Du, A new method for construction of orthomorphic permutations (in Chinese), J. Electr. Inform. Tech., 31 (2009), 1438-1441. |
show all references
References:
[1] |
A. Canteaut and M. Trabbia, Improved fast correlation attacks using parity-check equations of weight 4 and 5, in "EUROCRYPT 2000'' (ed. B. Preneel), Springer, (2000), 573-588.
doi: 10.1007/3-540-45539-6_40. |
[2] |
C. Carlet, Two new classes of bent functions, in "EUROCRYPT'93'' (ed. T. Helleseth), Springer, (1994), 77-101. |
[3] |
C. Carlet, Generalized partial spreads, IEEE Trans. Inform. Theory, 41 (1995), 1482-1487.
doi: 10.1109/18.412693. |
[4] |
C. Carlet, A construction of bent functions, in "Proceeding of the Third International Conference on Finite Fields and Applications'' (eds. S. Cohen and H. Niederreiter), Cambridge University Press, (1996), 47-58.
doi: 10.1017/CBO9780511525988.006. |
[5] |
C. Carlet, On the confusion and diffusion properties of Maiorana-McFarland's and extended Maiorana-McFarland's functions, J. Complexity, 20 (2004), 182-204.
doi: 10.1016/j.jco.2003.08.013. |
[6] |
C. Carlet, On the secondary constructions of resilient and bent functions, in "Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003'' (eds. K. Feng, H. Niederreiter and C. Xing), Birkhäuser Verlag, (2004), 3-28. |
[7] |
C. Carlet, On bent and highly nonlinear balanced/resilient functions and their algebaric immunities, in "AAECC 2006'' (eds. M. Fossorier et al.), Springer, (2006), 1-28. |
[8] |
C. Carlet, Boolean functions for cryptography and error correcting codes, in "Boolean Models and Methods in Mathematics, Computer Science, and Engineering'' (eds. Y. Crama and P. Hammer), Cambridge University Press, (2010), 257-397. |
[9] |
C. Carlet, H. Dobbertin and G. Leander, Normal extensions of bent functions, IEEE Trans. Inform. Theory, 50 (2004), 2880-2885.
doi: 10.1109/TIT.2004.836681. |
[10] |
J. Dillon, "Elementary Hadamard Difference Sets,'' Ph.D thesis, Univ. Maryland, College Park, 1974. |
[11] |
H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, in "Fast Software Encryption,'' Springer, (1995), 61-74.
doi: 10.1007/3-540-60590-8_5. |
[12] |
H. Dobbertin and G. Leander, Bent functions embedded into the recursive framework of $\mathbb Z$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3. |
[13] |
P. Guillo, Completed GPS covers all bent functions, J. Combin. Theory Ser. A, 93 (2001), 242-260.
doi: 10.1006/jcta.2000.3076. |
[14] |
X.-D. Hou, New constructions of bent functions, J. Combin. Inform. System Sci., 25 (2000), 173-189. |
[15] |
P. Langevin, G. Leander, P. Rabizzoni, P. Veron and J.-P. Zanotti, Classification of Boolean quartics forms in eight variables, availabel at http://langevin.univ-tln.fr/project/quartics/quartics.html |
[16] |
G. Leander, Monomial bent functions, IEEE Trans. Inform. Theory, 52 (2006), 738-743.
doi: 10.1109/TIT.2005.862121. |
[17] |
G. Leander and G. McGuire, Construction of bent functions from near-bent functions, J. Combin. Theory Ser. A, 116 (2009), 960-970.
doi: 10.1016/j.jcta.2008.12.004. |
[18] |
Q. Liu, Y. Zhang, C. Cheng and W. Lü, Construction and counting orthomorphism based on transversal, in "2008 International Conference on Computational Intelligence and Security,'' IEEE Computer Society, (2008), 369-373. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, Amsterdam, 1977. |
[20] |
R. I. McFarland, A family of difference sets in non-cyclic groups, J. Comb. Theory Ser. A, 15 (1973), 1-10.
doi: 10.1016/0097-3165(73)90031-9. |
[21] |
Q. Meng, L. Chen and F. Fu, On homogeneous rotation symmetric bent functions, Discrete Appl. Math., 158 (2010), 1111-1117.
doi: 10.1016/j.dam.2010.02.009. |
[22] |
J. D. Olsen, R. A. Scholtz and L. R. Welch, Bent-function sequence, IEEE Trans. Inform. Theory, 28 (1982), 858-864.
doi: 10.1109/TIT.1982.1056589. |
[23] |
O. S. Rothaus, On "bent'' functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[24] |
J. Wolfmann, Bent functions and coding theory, in "Difference Sets, Sequences and their Correlation Properties'' (eds. A. Pott, P.V. Kumar, T. Helleseth and D. Jungnickel), Amsterdam, Kluwer, (1999), 393-417. |
[25] |
H. Zhen, H. Zhang, T. Cui and X. Du, A new method for construction of orthomorphic permutations (in Chinese), J. Electr. Inform. Tech., 31 (2009), 1438-1441. |
[1] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[2] |
Nishant Sinha. Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack. Advances in Mathematics of Communications, 2021, 15 (3) : 539-556. doi: 10.3934/amc.2020081 |
[3] |
Stefano Barbero, Emanuele Bellini, Rusydi H. Makarim. Rotational analysis of ChaCha permutation. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021057 |
[4] |
Claude Carlet, Khoongming Khoo, Chu-Wee Lim, Chuan-Wen Loe. On an improved correlation analysis of stream ciphers using multi-output Boolean functions and the related generalized notion of nonlinearity. Advances in Mathematics of Communications, 2008, 2 (2) : 201-221. doi: 10.3934/amc.2008.2.201 |
[5] |
Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052 |
[6] |
Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505 |
[7] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2022, 16 (3) : 485-501. doi: 10.3934/amc.2020121 |
[8] |
Yi Ming Zou. Dynamics of boolean networks. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1629-1640. doi: 10.3934/dcdss.2011.4.1629 |
[9] |
Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038 |
[10] |
Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031 |
[11] |
Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061 |
[12] |
Franziska Hinkelmann, Reinhard Laubenbacher. Boolean models of bistable biological systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1443-1456. doi: 10.3934/dcdss.2011.4.1443 |
[13] |
Nian Li, Qiaoyu Hu. A conjecture on permutation trinomials over finite fields of characteristic two. Advances in Mathematics of Communications, 2019, 13 (3) : 505-512. doi: 10.3934/amc.2019031 |
[14] |
Ethel Mokotoff. Algorithms for bicriteria minimization in the permutation flow shop scheduling problem. Journal of Industrial and Management Optimization, 2011, 7 (1) : 253-282. doi: 10.3934/jimo.2011.7.253 |
[15] |
Ricardo P. Beausoleil, Rodolfo A. Montejo. A study with neighborhood searches to deal with multiobjective unconstrained permutation problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 193-216. doi: 10.3934/jimo.2009.5.193 |
[16] |
Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347 |
[17] |
Xiang Wang, Wenjuan Yin. New nonexistence results on perfect permutation codes under the hamming metric. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021058 |
[18] |
Hotaka Udagawa, Taiji Okano, Toshimichi Saito. Permutation binary neural networks: Analysis of periodic orbits and its applications. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022097 |
[19] |
Yongwu Rong, Chen Zeng, Christina Evans, Hao Chen, Guanyu Wang. Topology and dynamics of boolean networks with strong inhibition. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1565-1575. doi: 10.3934/dcdss.2011.4.1565 |
[20] |
Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]