-
Previous Article
Partial permutation decoding for simplex codes
- AMC Home
- This Issue
-
Next Article
Extended combinatorial constructions for peer-to-peer user-private information retrieval
Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless
1. | Centre for Advanced Study in Mathematics, Panjab University, Chandigarh-160014, India, India |
References:
[1] |
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005. |
[2] |
G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field,, Finite Fields Appl., ().
doi: 10.1016/j.ffa.2012.10.003. |
[3] |
D. M. Burton, "Elementry Number Theory,'' 6th edition, Tata McGraw-Hill, 2006. |
[4] |
W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge, 2003.
doi: 10.1017/CBO9780511807077. |
[5] |
Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 57 (2011), 2243-2251.
doi: 10.1109/TIT.2010.2092415. |
[6] |
X. S. Kai and S. X. Zhu, On cyclic self-dual codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509-525.
doi: 10.1007/s00200-008-0086-9. |
[7] |
V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory, in "Proc. Sympos. Appl. Math. (Orono, ME, 1991),'' Amer. Math. Soc., 46 (1992), 91-104. |
[8] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, New York, (1998), 177-294. |
[9] |
N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inform. Theory, 29 (1983), 364-367.
doi: 10.1109/TIT.1983.1056682. |
show all references
References:
[1] |
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005. |
[2] |
G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field,, Finite Fields Appl., ().
doi: 10.1016/j.ffa.2012.10.003. |
[3] |
D. M. Burton, "Elementry Number Theory,'' 6th edition, Tata McGraw-Hill, 2006. |
[4] |
W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge, 2003.
doi: 10.1017/CBO9780511807077. |
[5] |
Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 57 (2011), 2243-2251.
doi: 10.1109/TIT.2010.2092415. |
[6] |
X. S. Kai and S. X. Zhu, On cyclic self-dual codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509-525.
doi: 10.1007/s00200-008-0086-9. |
[7] |
V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory, in "Proc. Sympos. Appl. Math. (Orono, ME, 1991),'' Amer. Math. Soc., 46 (1992), 91-104. |
[8] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, New York, (1998), 177-294. |
[9] |
N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inform. Theory, 29 (1983), 364-367.
doi: 10.1109/TIT.1983.1056682. |
[1] |
Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437 |
[2] |
Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047 |
[3] |
Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031 |
[4] |
Annika Meyer. On dual extremal maximal self-orthogonal codes of Type I-IV. Advances in Mathematics of Communications, 2010, 4 (4) : 579-596. doi: 10.3934/amc.2010.4.579 |
[5] |
Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23 |
[6] |
Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229 |
[7] |
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267 |
[8] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[9] |
Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 |
[10] |
Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1 |
[11] |
Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023 |
[12] |
Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021070 |
[13] |
Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002 |
[14] |
Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018 |
[15] |
W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57 |
[16] |
W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357 |
[17] |
Nikolay Yankov. Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7. Advances in Mathematics of Communications, 2014, 8 (1) : 73-81. doi: 10.3934/amc.2014.8.73 |
[18] |
Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251 |
[19] |
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433 |
[20] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]