\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless

Abstract Related Papers Cited by
  • It is of interest to know when cyclic self-orthogonal codes of length $n$ over $\mathbb F_q$ do not exist. The conditions, listed by Pless in [7] under which cyclic self-orthogonal codes can not exist, are not always sufficient. An example is given to assert this. Here we give the necessary and sufficient conditions under which cyclic self-orthogonal codes of length $n$ over $\mathbb F_q$ do not exist.
    Mathematics Subject Classification: Primary: 11T71; Secondary: 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.doi: 10.1016/j.ffa.2011.09.005.

    [2]

    G. K. Bakshi and M. RakaSelf-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., to appear. doi: 10.1016/j.ffa.2012.10.003.

    [3]

    D. M. Burton, "Elementry Number Theory,'' 6th edition, Tata McGraw-Hill, 2006.

    [4]

    W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge, 2003.doi: 10.1017/CBO9780511807077.

    [5]

    Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 57 (2011), 2243-2251.doi: 10.1109/TIT.2010.2092415.

    [6]

    X. S. Kai and S. X. Zhu, On cyclic self-dual codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509-525.doi: 10.1007/s00200-008-0086-9.

    [7]

    V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory, in "Proc. Sympos. Appl. Math. (Orono, ME, 1991),'' Amer. Math. Soc., 46 (1992), 91-104.

    [8]

    E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, New York, (1998), 177-294.

    [9]

    N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inform. Theory, 29 (1983), 364-367.doi: 10.1109/TIT.1983.1056682.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return