Advanced Search
Article Contents
Article Contents

Partitioning CCZ classes into EA classes

Abstract Related Papers Cited by
  • EA equivalence classes and the coarser CCZ equivalence classes of functions over $GF(p^n)$ each preserve measures of nonlinearity desirable in cryptographic functions. We identify very precisely the condition on a linear permutation defining a CCZ isomorphism between functions which ensures that the CCZ isomorphism can be rewritten as EA isomorphism. We introduce new algebraic invariants $n(f)$ of the EA isomorphism class of $f$ and $s(f)$ of the CCZ isomorphism class of $f$, with $n(f) < s(f)$, and relate them to the differential uniformity of $f$. We formulate three questions about partitioning CCZ classes into EA classes and relate these to a conjecture of Edel's about quadratic APN functions.
    Mathematics Subject Classification: Primary: 94A60; Secondary: 05B10, 20K35.


    \begin{equation} \\ \end{equation}
  • [1]

    B. Aslan, M. T. Sakalli and E. Bulus, Classifying 8-bit to 8-bit S-boxes based on power mappings from the point of DDT and LAT distributions, in "Proc. WAIFI 2008'' (eds. J. von zur Gathen), Springer, Berlin, (2008), 123-133.


    C. Bracken, E. Byrne, G. McGuire and G. Nebe, On the equivalence of quadratic APN functions, Des. Codes Cryptogr., 61 (2011), 261-272.doi: 10.1007/s10623-010-9475-8.


    M. Brinkmann and G. Leander, On the classification of APN functions up to dimension 5, Des. Codes Cryptogr., 49 (2008), 273-288.doi: 10.1007/s10623-008-9194-6.


    K. A. Browning, J. F. Dillon, R. E. Kibler and M. T. McQuistan, APN polynomials and related codes, J. Comb. Inf. Syst. Sci., 34 (2009), 135-159.


    L. Budaghyan, C. Carlet and A. Pott, New classes of almost bent and almost perfect nonlinear polynomials, IEEE Trans. Inform. Theory, 52 (2006), 1141-1152.doi: 10.1109/TIT.2005.864481.


    C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.doi: 10.1023/A:1008344232130.


    R. East, "Nonlinear Functions over Finite Fields,'' Honours thesis, RMIT University, 2008, (unpublished).


    Y. Edel, APN functions and dual hyperovals, in "NATO Advanced Research Workshop,'' Veliko Tarnovo, Bulgaria, (2008).


    Y. Edel, Personal correspondence, March 2010.


    Y. Edel, G. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power mapping, IEEE Trans. Inform. Theory, 52 (2006), 744-747.doi: 10.1109/TIT.2005.862128.


    Y. Edel and A. Pott, A new almost perfect nonlinear function which is not quadratic, Adv. Math. Commun., 3 (2009), 59-81.doi: 10.3934/amc.2009.3.59.


    K. J. Horadam, "Hadamard Matrices and their Applications,'' Princeton University Press, Princeton, 2007.


    K. J. Horadam, Relative difference sets, graphs and inequivalence of functions between groups, J. Combin. Des., 18 (2010), 260-273.


    K. J. Horadam, Equivalence classes of functions between finite groups, J. Algebr. Comb., (2012), to appear, DOI 10.1007/s10801-011-0310-8.doi: 10.1007/s10801-011-0310-8.


    K. J. Horadam and D. G. Farmer, Bundles, presemifields and nonlinear functions, Des. Codes Cryptogr., 49 (2008), 79-94.doi: 10.1007/s10623-008-9172-z.


    G. M. Kyureghyan and A. Pott, Some theorems on planar mappings, in "Proc. WAIFI 2008'' (eds. J. von zur Gathen et al), Springer, Berlin, (2008), 117-122.


    K. Nyberg, Differentially uniform mappings for cryptography, in "EUROCRYPT-93,'' Springer, New York, (1994), 55-64.

  • 加载中

Article Metrics

HTML views() PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint