May  2013, 7(2): 113-125. doi: 10.3934/amc.2013.7.113

Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions

1. 

Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sicuan 610031, China, China

2. 

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1

Received  April 2012 Published  May 2013

A pair of two sequences is called the even periodic (odd periodic) complementary sequence pair if the sum of their even periodic (odd periodic) correlation function is a delta function. The well-known Golay aperiodic complementary sequence pair (Golay pair) is a special case of even periodic (odd periodic) complementary sequence pair. In this paper, we presented several classes of even periodic and odd periodic complementary pairs based on the generalized Boolean functions, but which do not form Gloay pairs. The proposed sequences could be used to design signal sets, which have been applied in direct sequence code division multiple (DS-CDMA) cellular communication systems.
Citation: Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113-125. doi: 10.3934/amc.2013.7.113
References:
[1]

L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE. Trans. Inf. Theory, 35 (1990), 1487-1494.

[2]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417. doi: 10.1109/18.796380.

[3]

P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications,'' Research Studies Press, John Wiley & Sons Ltd, London, 1996.

[4]

K. Q. Feng, P. J.-S. Shiue and Q. Xiang, On aperiodic and periodic complementary binary sequences, IEEE Trans. Inf. Theory, 45 (1999), 296-303. doi: 10.1109/18.746823.

[5]

H. Ganapathy, D. A. Pados and G. N. Karystinos, New bounds and optimal binary signature sets-Part I: Periodic total squared correlation, IEEE Trans. Inf. Theory, 59 (2011), 1123-1132.

[6]

M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444. doi: 10.1364/JOSA.39.000437.

[7]

M. J. E. Golay, Complementary series, IRE Trans., 7 (1961), 82-87.

[8]

M. J. E. Golay, Note on complementary series, Proc. IRE, 50 (1962), 84.

[9]

S. W. Golomb and G. Gong, "Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications,'' Cambridge Univeristy Press, Cambridge, 2005. doi: 10.1017/CBO9780511546907.

[10]

H. L. Jin, G. D. Liang, Z. H. Liu and C. Q. Xu, The necessary condition of families of odd periodic perfect complementary sequence pairs, in "2009 International Conference on Computational Intelligence and Security,'' (2009), 303-307. doi: 10.1109/CIS.2009.227.

[11]

G. N. Karystinos and D. A. Pados, New bounds on the total squared correlation and optimal design of DS-CDMA binary signature sets, IEEE Trans. Commun., 51 (2003), 48-51. doi: 10.1109/TCOMM.2002.807628.

[12]

N. Levanon, "Radar Principles,'' Wiley Interscience, New York, 1988.

[13]

H. D. Lüke, Binary odd periodic complementary sequences, IEEE Trans. Inf. Theory, 43 (1997), 365-367. doi: 10.1109/18.567768.

[14]

H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electron. Syst., 31 (1995), 495-498. doi: 10.1109/7.366335.

[15]

M. G. Parker, K. G. Paterson and C. Tellambura, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunications'' (ed. J.G. Proakis), Wiley Interscience, New York, 2002.

[16]

K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120. doi: 10.1109/18.817512.

[17]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part I: System analysis, IEEE Trans. Inf. Theory, 25 (1977), 795-799.

[18]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part II: Code sequence analysis, IEEE Trans. Inf. Theory, 25 (1977), 800-803.

[19]

M. B. Pursley, "An Introduction to Digital Communications,'' Pearson Prentice Hall, U.S., 2005.

[20]

D. V. Sarwate, Meeting the Welch bound with equality, in "Sequences and Their Applications: Proceedings of SETA'98'' (eds. C. Ding, T. Helleseth and H. Niederreiter), Springer-Verlag, London, (1999), 79-102.

[21]

D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619. doi: 10.1109/PROC.1980.11697.

[22]

H. D. Schotten, New optimum ternary complementary sets and almost quadriphase, perfect sequences, in "Int. Conference on Neural Networks and Signal Processing (ICNNSP'95),'' Nanjing, China, (1995), 1106-1109.

[23]

R. Sivaswamy, Self-clutter cancellation and ambiguity properties of subcomplementary sequences, IEEE Trans. Aerosp. Electron. Sysr., AES-18 (1982), 163-180. doi: 10.1109/TAES.1982.309223.

[24]

C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-651. doi: 10.1109/TIT.1972.1054860.

[25]

H. Wen, F. Hu and F. Jin, Design of odd periodic complementary binary signal set, in "Ninth IEEE Symposium on Computers and Communications 2004,'' 2 (2004), 590-593.

show all references

References:
[1]

L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE. Trans. Inf. Theory, 35 (1990), 1487-1494.

[2]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417. doi: 10.1109/18.796380.

[3]

P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications,'' Research Studies Press, John Wiley & Sons Ltd, London, 1996.

[4]

K. Q. Feng, P. J.-S. Shiue and Q. Xiang, On aperiodic and periodic complementary binary sequences, IEEE Trans. Inf. Theory, 45 (1999), 296-303. doi: 10.1109/18.746823.

[5]

H. Ganapathy, D. A. Pados and G. N. Karystinos, New bounds and optimal binary signature sets-Part I: Periodic total squared correlation, IEEE Trans. Inf. Theory, 59 (2011), 1123-1132.

[6]

M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444. doi: 10.1364/JOSA.39.000437.

[7]

M. J. E. Golay, Complementary series, IRE Trans., 7 (1961), 82-87.

[8]

M. J. E. Golay, Note on complementary series, Proc. IRE, 50 (1962), 84.

[9]

S. W. Golomb and G. Gong, "Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications,'' Cambridge Univeristy Press, Cambridge, 2005. doi: 10.1017/CBO9780511546907.

[10]

H. L. Jin, G. D. Liang, Z. H. Liu and C. Q. Xu, The necessary condition of families of odd periodic perfect complementary sequence pairs, in "2009 International Conference on Computational Intelligence and Security,'' (2009), 303-307. doi: 10.1109/CIS.2009.227.

[11]

G. N. Karystinos and D. A. Pados, New bounds on the total squared correlation and optimal design of DS-CDMA binary signature sets, IEEE Trans. Commun., 51 (2003), 48-51. doi: 10.1109/TCOMM.2002.807628.

[12]

N. Levanon, "Radar Principles,'' Wiley Interscience, New York, 1988.

[13]

H. D. Lüke, Binary odd periodic complementary sequences, IEEE Trans. Inf. Theory, 43 (1997), 365-367. doi: 10.1109/18.567768.

[14]

H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electron. Syst., 31 (1995), 495-498. doi: 10.1109/7.366335.

[15]

M. G. Parker, K. G. Paterson and C. Tellambura, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunications'' (ed. J.G. Proakis), Wiley Interscience, New York, 2002.

[16]

K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120. doi: 10.1109/18.817512.

[17]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part I: System analysis, IEEE Trans. Inf. Theory, 25 (1977), 795-799.

[18]

M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part II: Code sequence analysis, IEEE Trans. Inf. Theory, 25 (1977), 800-803.

[19]

M. B. Pursley, "An Introduction to Digital Communications,'' Pearson Prentice Hall, U.S., 2005.

[20]

D. V. Sarwate, Meeting the Welch bound with equality, in "Sequences and Their Applications: Proceedings of SETA'98'' (eds. C. Ding, T. Helleseth and H. Niederreiter), Springer-Verlag, London, (1999), 79-102.

[21]

D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619. doi: 10.1109/PROC.1980.11697.

[22]

H. D. Schotten, New optimum ternary complementary sets and almost quadriphase, perfect sequences, in "Int. Conference on Neural Networks and Signal Processing (ICNNSP'95),'' Nanjing, China, (1995), 1106-1109.

[23]

R. Sivaswamy, Self-clutter cancellation and ambiguity properties of subcomplementary sequences, IEEE Trans. Aerosp. Electron. Sysr., AES-18 (1982), 163-180. doi: 10.1109/TAES.1982.309223.

[24]

C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-651. doi: 10.1109/TIT.1972.1054860.

[25]

H. Wen, F. Hu and F. Jin, Design of odd periodic complementary binary signal set, in "Ninth IEEE Symposium on Computers and Communications 2004,'' 2 (2004), 590-593.

[1]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[2]

Zhen Li, Cuiling Fan, Wei Su, Yanfeng Qi. Aperiodic/periodic complementary sequence pairs over quaternions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021063

[3]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

[4]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[5]

Bingsheng Shen, Yang Yang, Ruibin Ren. Three constructions of Golay complementary array sets. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022019

[6]

Liqun Yao, Wenli Ren, Yong Wang, Chunming Tang. Z-complementary pairs with flexible lengths and large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021037

[7]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[8]

Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155

[9]

Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379

[10]

Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011

[11]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[12]

Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control and Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042

[13]

Andrea Braides, Margherita Solci, Enrico Vitali. A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2 (3) : 551-567. doi: 10.3934/nhm.2007.2.551

[14]

Bernard Bonnard, Olivier Cots, Jérémy Rouot, Thibaut Verron. Time minimal saturation of a pair of spins and application in Magnetic Resonance Imaging. Mathematical Control and Related Fields, 2020, 10 (1) : 47-88. doi: 10.3934/mcrf.2019029

[15]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[16]

Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203

[17]

Mridul Nandi, Tapas Pandit. Efficient fully CCA-secure predicate encryptions from pair encodings. Advances in Mathematics of Communications, 2022, 16 (1) : 37-72. doi: 10.3934/amc.2020098

[18]

Gaofei Wu, Yuqing Zhang, Xuefeng Liu. New complementary sets of length $2^m$ and size 4. Advances in Mathematics of Communications, 2016, 10 (4) : 825-845. doi: 10.3934/amc.2016043

[19]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial and Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[20]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (141)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]