\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The classification of complementary information set codes of lengths $14$ and $16$

Abstract Related Papers Cited by
  • In the paper ``A new class of codes for Boolean masking of cryptographic computations,'' Carlet, Gaborit, Kim, and Solé defined a new class of rate one-half binary codes called complementary information set (or CIS) codes. The authors then classified all CIS codes of length less than or equal to 12. CIS codes have relations to classical Coding Theory as they are a generali-zation of self-dual codes. As stated in the paper, CIS codes also have important practical applications as they may improve the cost of masking cryptographic algorithms against side channel attacks. In this paper, we give a complete classification result for length 14 CIS codes using an equivalence relation on $GL(n,\mathbb{F}_2)$. We also give a new classification for all binary $[16,8,3]$ and $[16,8,4]$ codes. We then complete the classification for length 16 CIS codes and give additional classifications for optimal CIS codes of lengths 20 and 26.
    Mathematics Subject Classification: 94B05, 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes, Des. Codes Crypt., 23 (2001), 11-21.doi: 10.1023/A:1011203416769.

    [2]

    K. Betsumiya and M. Harada, Classification of formally self-dual even codes of lengths up to 16, Des. Codes Crypt., 23 (2001), 325-332.doi: 10.1023/A:1011223128089.

    [3]

    K. Betsumiya, M. Harada and A. MunemasaA complete classification of doubly-even self-dual codes of length 40, preprint, arXiv:1104.3727v2

    [4]

    J. Cannon and C. Playoust, "An Introduction to Magma,'' University of Sydney, Sydney, Australia, 1994.

    [5]

    C. Carlet, P. Gaborit, J.-L. Kim and P. SoléA new class of codes for Boolean masking of cryptographic computations, preprint, arXiv:1110.1193v2 doi: 10.1109/TIT.2012.2200651.

    [6]

    I. A. Faradzev, Constructive enumeration of combinatorial objects, in "Problemes Combinatoires et Theorie des Graphes Colloque Internat,'' CNRS, Paris, (1978), 131-135.

    [7]

    J. E. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of extremal even formally self-dual codes of lengths 20 and 22, Discrete Appl. Math., 111 (2001), 75-86.doi: 10.1016/S0166-218X(00)00345-0.

    [8]

    F. Freibert, A classification of binary [16,8,4] codes; A classification of [14,7] CIS codes, available online at http://finleyfreibert.wordpress.com/mathematics-research/, 2012.

    [9]

    T. A. Gulliver and P. R. J. Östergard, Binary optimal linear rate 1/2 codes, Discrete Math., 283 (2004), 255-261.doi: 10.1016/j.disc.2003.10.027.

    [10]

    S. Han, H. Lee and Y. Lee, Binary formally self-dual odd codes, Des. Codes Crypt., 61 (2010), 141-150.doi: 10.1007/s10623-010-9444-2.

    [11]

    W. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge University Press, Cambridge, 2003.

    [12]

    P. Kaski and P. R. J. Östergard, "Classification Algorithms for Codes and Designs,'' Springer, Berlin, 2006.

    [13]

    H. Maghrebi, C. Carlet, S. Guilley and J.-L. Danger, Optimal first-order masking with linear and non-linear bijections, in "Progress in Cryptology - AFRICACRYPT 2012,'' (2012), 360-377.doi: 10.1007/978-3-642-31410-0_22.

    [14]

    H. Maghrebi, S. Guilley, C. Carlet and J.-L. Danger, Classification of high-order Boolean masking Schemes and improvements of their efficiency, available online at http://eprint.iacr.org/2011/520.pdf, 2011.

    [15]

    H. Maghrebi, S. Guilley and J.-L. Danger, Leakage squeezing countermeasure against high-order attacks, in "Information Security Theory and Practice,'' Springer, Berlin, (2011), 208-223.doi: 10.1007/978-3-642-21040-2_14.

    [16]

    B. D. McKay, Nauty user's guide (version 2.4), available online at http://cs.anu.edu.au/~bdm/nauty/nug.pdf, 2009.

    [17]

    P. R. J. Östergard, Classifying subspaces of hamming spaces, Des. Codes Crypt., 27 (2000), 297-305.doi: 10.1023/A:1019903407222.

    [18]

    V. Pless, A classification of self-orthogonal codes over $GF(2)$, Discrete Math., 3 (1972), 215-228.doi: 10.1016/0012-365X(72)90034-9.

    [19]

    R. C. Read, Every one a winner; or, how to avoid isomorphism search when cataloguing combinatorial configurations, Ann. Discrete Math., 2 (1978), 107-120.doi: 10.1016/S0167-5060(08)70325-X.

    [20]

    M. Rivain and E. Prouff, Provably secure higher-order masking of AES, in "Cryptographic Hardware and Embedded Systems, CHES 2010,'' Springer, Berlin, (2010), 413-427.doi: 10.1007/978-3-642-15031-9_28.

    [21]

    H. G. Schaathun, On higher weights and code existence, in "Cryptography and Coding,'' Springer, Berlin, (2009), 56-64.doi: 10.1007/978-3-642-10868-6_4.

    [22]

    J. Simonis, A description of the $[16,7,6]$ codes, in "Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,'' Springer, Berlin, (1991), 25-35.doi: 10.1007/3-540-54195-0_36.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return