-
Previous Article
($\sigma,\delta$)-codes
- AMC Home
- This Issue
-
Next Article
On the dual of (non)-weakly regular bent functions and self-dual bent functions
Quotients of orders in cyclic algebras and space-time codes
1. | Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore |
2. | Department of Mathematics, California State University Northridge, Northridge, CA 91330, United States |
References:
[1] |
IEEE Trans. Commun., 61 (2013), 3396-3403.
doi: 10.1109/TCOMM.2013.061913.120278. |
[2] |
J. Symb. Comput., 44 (2009), 1644-1656.
doi: 10.1016/j.jsc.2007.11.008. |
[3] |
Cambridge University Press, 1999. Google Scholar |
[4] |
J. Algebra, 128 (1990), 126-179.
doi: 10.1016/0021-8693(90)90047-R. |
[5] |
Second edition, Amer. Math. Soc., 1996. |
[6] |
IEEE Trans. Inf. Theory, 55 (2009), 584-597.
doi: 10.1109/TIT.2008.2009846. |
[7] |
Math. Nachrichten, 274 (2004), 104-116.
doi: 10.1002/mana.200310204. |
[8] |
IEEE Trans. Inf. Theory, 52 (2006), 3885-3902.
doi: 10.1109/TIT.2006.880010. |
[9] |
IEEE Trans. Inf. Theory, 58 (2012), 734-746.
doi: 10.1109/TIT.2011.2173732. |
[10] |
Academic Press, 1975. |
[11] |
Academic Press, 1991. |
[12] |
Amer. Math. Soc., 1950. |
[13] |
Notices AMS, 57 (2010), 1432-1439. |
[14] |
IEEE Trans. Inf. Theory, 49 (2003), 2596-2616.
doi: 10.1109/TIT.2003.817831. |
[15] |
Fields Institute Commu., 32 (2002), 385-449. |
[16] |
Springer, 1982.
doi: 10.1007/978-1-4684-0133-2. |
[17] |
Bell Syst. Tech. J., 54 (1975), 1355-1387.
doi: 10.1002/j.1538-7305.1975.tb02040.x. |
show all references
References:
[1] |
IEEE Trans. Commun., 61 (2013), 3396-3403.
doi: 10.1109/TCOMM.2013.061913.120278. |
[2] |
J. Symb. Comput., 44 (2009), 1644-1656.
doi: 10.1016/j.jsc.2007.11.008. |
[3] |
Cambridge University Press, 1999. Google Scholar |
[4] |
J. Algebra, 128 (1990), 126-179.
doi: 10.1016/0021-8693(90)90047-R. |
[5] |
Second edition, Amer. Math. Soc., 1996. |
[6] |
IEEE Trans. Inf. Theory, 55 (2009), 584-597.
doi: 10.1109/TIT.2008.2009846. |
[7] |
Math. Nachrichten, 274 (2004), 104-116.
doi: 10.1002/mana.200310204. |
[8] |
IEEE Trans. Inf. Theory, 52 (2006), 3885-3902.
doi: 10.1109/TIT.2006.880010. |
[9] |
IEEE Trans. Inf. Theory, 58 (2012), 734-746.
doi: 10.1109/TIT.2011.2173732. |
[10] |
Academic Press, 1975. |
[11] |
Academic Press, 1991. |
[12] |
Amer. Math. Soc., 1950. |
[13] |
Notices AMS, 57 (2010), 1432-1439. |
[14] |
IEEE Trans. Inf. Theory, 49 (2003), 2596-2616.
doi: 10.1109/TIT.2003.817831. |
[15] |
Fields Institute Commu., 32 (2002), 385-449. |
[16] |
Springer, 1982.
doi: 10.1007/978-1-4684-0133-2. |
[17] |
Bell Syst. Tech. J., 54 (1975), 1355-1387.
doi: 10.1002/j.1538-7305.1975.tb02040.x. |
[1] |
Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449 |
[2] |
Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167 |
[3] |
Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323 |
[4] |
Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449 |
[5] |
David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35 |
[6] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[7] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[8] |
Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255 |
[9] |
Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163 |
[10] |
Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039 |
[11] |
Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 |
[12] |
Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021 |
[13] |
Ranya Djihad Boulanouar, Aicha Batoul, Delphine Boucher. An overview on skew constacyclic codes and their subclass of LCD codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020085 |
[14] |
Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046 |
[15] |
Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131 |
[16] |
M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13 |
[17] |
Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001 |
[18] |
Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83 |
[19] |
Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007 |
[20] |
Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]