February  2013, 7(1): 91-101. doi: 10.3934/amc.2013.7.91

New constructions of optimal frequency hopping sequences with new parameters

1. 

The Thirtieth Research Institute, China Electronic Technology Group Corporation, Chengdu, China

2. 

School of Mobile Communications, Southwest Jiaotong University, Chengdu, 610031, China, China

3. 

School of Mathematics, Southwest Jiaotong University, Chengdu, 610031

Received  June 2012 Published  January 2013

In this paper, three constructions of frequency hopping sequences (FHSs) are proposed using a new generalized cyclotomy with respect to $\textbf{Z}_{p^n}$, where $p$ is an odd prime and $n$ is a positive integer. Based on some basic properties of the new generalized cyclotomy, it is shown that all the constructed FHSs are optimal with respect to the well-known Lempel-Greenberger bound. Furthermore, these FHSs have new parameters which are not reported in the literature.
Citation: Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91
References:
[1]

T. M. Apostol, "Introduction to Analytic Number Theory,'' Springer-Verlag, New York, 1976.

[2]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141.

[3]

J. H. Chung, and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 56 (2010), 1685-1693.

[4]

C. Ding, Autocorrelation values of generalized cyclotomic sequences of order two, IEEE Trans. Inform. Theory, 44 (1998), 1699-1702.

[5]

C. Ding, R. Fuji-Hara, and Y. Fujiwara, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inform. Theory, 55 (2009), 3297-3304. doi: 10.1109/TIT.2009.2021366.

[6]

C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.

[7]

C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_1^{e_1}\cdots p_t^{e_t}$, IEEE Trans. Inform. Theory, 45 (1999), 467-474.

[8]

C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610. doi: 10.1109/TIT.2007.899545.

[9]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.

[10]

P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequency-hopping CDMA systems, IEEE Trans. Inform. Theory, 4 (2005), 2836-2842.

[11]

R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420. doi: 10.1109/TIT.2004.834783.

[12]

G. Ge, Y. Miao and Z. H. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2008), 867-879.

[13]

Y. K. Han and K. Yang, On the Sidelnikov sequences as frequency-hopping sequences, IEEE Trans. Inform. Theory, 55 (2009), 4279-4285.

[14]

J. J. Komo and S. C. Liu, Maximal length sequences for frequency hopping, IEEE J. Select. Areas Commun., 8 (1990), 819-822.

[15]

A. Lempel and H. Greenberger, Families of sequences with optimal hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94. doi: 10.1109/TIT.1974.1055169.

[16]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross-correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154. doi: 10.1109/TIT.2004.833362.

[17]

P. Udaya and M. N. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, IT-44 (1998), 1492-1503.

[18]

A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121.

[19]

M. Z. Win and R. A. Scholtz, Ultra-Wide Bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications, IEEE Trans. Commun., 58 (2002), 679-691.

show all references

References:
[1]

T. M. Apostol, "Introduction to Analytic Number Theory,'' Springer-Verlag, New York, 1976.

[2]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141.

[3]

J. H. Chung, and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 56 (2010), 1685-1693.

[4]

C. Ding, Autocorrelation values of generalized cyclotomic sequences of order two, IEEE Trans. Inform. Theory, 44 (1998), 1699-1702.

[5]

C. Ding, R. Fuji-Hara, and Y. Fujiwara, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inform. Theory, 55 (2009), 3297-3304. doi: 10.1109/TIT.2009.2021366.

[6]

C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.

[7]

C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_1^{e_1}\cdots p_t^{e_t}$, IEEE Trans. Inform. Theory, 45 (1999), 467-474.

[8]

C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610. doi: 10.1109/TIT.2007.899545.

[9]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.

[10]

P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequency-hopping CDMA systems, IEEE Trans. Inform. Theory, 4 (2005), 2836-2842.

[11]

R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420. doi: 10.1109/TIT.2004.834783.

[12]

G. Ge, Y. Miao and Z. H. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2008), 867-879.

[13]

Y. K. Han and K. Yang, On the Sidelnikov sequences as frequency-hopping sequences, IEEE Trans. Inform. Theory, 55 (2009), 4279-4285.

[14]

J. J. Komo and S. C. Liu, Maximal length sequences for frequency hopping, IEEE J. Select. Areas Commun., 8 (1990), 819-822.

[15]

A. Lempel and H. Greenberger, Families of sequences with optimal hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94. doi: 10.1109/TIT.1974.1055169.

[16]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross-correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154. doi: 10.1109/TIT.2004.833362.

[17]

P. Udaya and M. N. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, IT-44 (1998), 1492-1503.

[18]

A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121.

[19]

M. Z. Win and R. A. Scholtz, Ultra-Wide Bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications, IEEE Trans. Commun., 58 (2002), 679-691.

[1]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[2]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[3]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[4]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[5]

Xianhong Xie, Yi Ouyang, Honggang Hu, Ming Mao. Construction of three classes of strictly optimal frequency-hopping sequence sets. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022024

[6]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[7]

Wenli Ren, Feng Wang. A new class of optimal wide-gap one-coincidence frequency-hopping sequence sets. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020131

[8]

Wenjuan Yin, Can Xiang, Fang-Wei Fu. Two constructions of low-hit-zone frequency-hopping sequence sets. Advances in Mathematics of Communications, 2022, 16 (2) : 249-267. doi: 10.3934/amc.2020110

[9]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[10]

Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012

[11]

Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021019

[12]

Pinhui Ke, Yueqin Jiang, Zhixiong Chen. On the linear complexities of two classes of quaternary sequences of even length with optimal autocorrelation. Advances in Mathematics of Communications, 2018, 12 (3) : 525-539. doi: 10.3934/amc.2018031

[13]

Oǧuz Yayla. Nearly perfect sequences with arbitrary out-of-phase autocorrelation. Advances in Mathematics of Communications, 2016, 10 (2) : 401-411. doi: 10.3934/amc.2016014

[14]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[15]

Pinhui Ke, Panpan Qiao, Yang Yang. On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length $ 2p$. Advances in Mathematics of Communications, 2022, 16 (2) : 285-302. doi: 10.3934/amc.2020112

[16]

Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2020, 14 (4) : 579-589. doi: 10.3934/amc.2020031

[17]

Xiujie Zhang, Xianhua Niu, Xin Tan. Constructions of optimal low hit zone frequency hopping sequence sets with large family size. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2021071

[18]

Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115-122. doi: 10.3934/amc.2017006

[19]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[20]

Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]