-
Previous Article
Concatenations of the hidden weighted bit function and their cryptographic properties
- AMC Home
- This Issue
-
Next Article
On the covering radius of some modular codes
On Abelian group representability of finite groups
1. | Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore |
References:
[1] |
T. H. Chan, Aspects of Information Inequalities and its Applications, M.Phil Thesis, Dept. of Information Engineering, The Chinese University of Hong Kong, 1998. |
[2] |
T. H. Chan, Group characterizable entropy functions, in 2007 IEEE International Symposium on Information Theory, Nice, France, 2007.
doi: 10.1109/ISIT.2007.4557275. |
[3] |
T. H. Chan and R. W. Yeung, On a relation between information inequalities and group theory, IEEE Trans. on Information Theory, 48 (2002), 1992-1995.
doi: 10.1109/TIT.2002.1013138. |
[4] |
D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition, John Wiley and Sons, 2004. |
[5] |
B. Hassibi and S. Shadbakht, Normalized entropy vectors, network information theory and convex optimization, in 2007 Information Theory Workshop, 2007.
doi: 10.1109/ITWITWN.2007.4318051. |
[6] |
E. Thomas and F. Oggier, A note on quasi-uniform distributions and abelian group representability, in 2012 International Conference on Signal Processing and Communications, Bangalore, India, 2012.
doi: 10.1109/SPCOM.2012.6290020. |
[7] |
X. Yan, R. Yeung and Z. Zhang, The capacity for multi-source multi-sink network coding, in 2007 International Symposium on Information Theory, Nice, France, 2007.
doi: 10.1109/ISIT.2007.4557213. |
show all references
References:
[1] |
T. H. Chan, Aspects of Information Inequalities and its Applications, M.Phil Thesis, Dept. of Information Engineering, The Chinese University of Hong Kong, 1998. |
[2] |
T. H. Chan, Group characterizable entropy functions, in 2007 IEEE International Symposium on Information Theory, Nice, France, 2007.
doi: 10.1109/ISIT.2007.4557275. |
[3] |
T. H. Chan and R. W. Yeung, On a relation between information inequalities and group theory, IEEE Trans. on Information Theory, 48 (2002), 1992-1995.
doi: 10.1109/TIT.2002.1013138. |
[4] |
D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition, John Wiley and Sons, 2004. |
[5] |
B. Hassibi and S. Shadbakht, Normalized entropy vectors, network information theory and convex optimization, in 2007 Information Theory Workshop, 2007.
doi: 10.1109/ITWITWN.2007.4318051. |
[6] |
E. Thomas and F. Oggier, A note on quasi-uniform distributions and abelian group representability, in 2012 International Conference on Signal Processing and Communications, Bangalore, India, 2012.
doi: 10.1109/SPCOM.2012.6290020. |
[7] |
X. Yan, R. Yeung and Z. Zhang, The capacity for multi-source multi-sink network coding, in 2007 International Symposium on Information Theory, Nice, France, 2007.
doi: 10.1109/ISIT.2007.4557213. |
[1] |
Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957 |
[2] |
Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83 |
[3] |
Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure and Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775 |
[4] |
Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281 |
[5] |
Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015 |
[6] |
Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130 |
[7] |
Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167 |
[8] |
Kesong Yan, Qian Liu, Fanping Zeng. Classification of transitive group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5579-5607. doi: 10.3934/dcds.2021089 |
[9] |
Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113 |
[10] |
Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15 |
[11] |
Marcelo Sobottka. Topological quasi-group shifts. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77 |
[12] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[13] |
Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209 |
[14] |
Nadya Markin, Eldho K. Thomas, Frédérique Oggier. On group violations of inequalities in five subgroups. Advances in Mathematics of Communications, 2016, 10 (4) : 871-893. doi: 10.3934/amc.2016047 |
[15] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[16] |
Maik Gröger, Olga Lukina. Measures and stabilizers of group Cantor actions. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2001-2029. doi: 10.3934/dcds.2020350 |
[17] |
Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5871-5886. doi: 10.3934/dcds.2021099 |
[18] |
Yuri Berest, Alimjon Eshmatov, Farkhod Eshmatov. On subgroups of the Dixmier group and Calogero-Moser spaces. Electronic Research Announcements, 2011, 18: 12-21. doi: 10.3934/era.2011.18.12 |
[19] |
Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014 |
[20] |
Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]