May  2014, 8(2): 167-189. doi: 10.3934/amc.2014.8.167

Algebraic space-time codes based on division algebras with a unitary involution

1. 

Université Joseph Fourier, Institut Fourier, 100 rue des maths, BP 74, F-38402 Saint Martin d'Hères Cedex, France

Received  February 2013 Published  May 2014

In this paper, we focus on the design of unitary space-time codes achieving full diversity using division algebras, and on the systematic computation of their minimum determinant. We also give examples of such codes with high minimum determinant. Division algebras allow to obtain higher rates than known constructions based on finite groups.
Citation: Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167
References:
[1]

G. Berhuy and F. Oggier, Space-time codes from crossed product algebras of degree 4, in Proceedings of Applied algebra, algebraic algorithms and error-correcting codes, 2007, 90-99. doi: 10.1007/978-3-540-77224-8_13.

[2]

G. Berhuy and F. Oggier, An Introduction to Central Simple Simple Algebras and their Applications to Wireless Communications, AMS., Providence, 2013.

[3]

G. Berhuy and R. Slessor, Optimality of codes based on crossed product algebras,, preprint., (). 

[4]

B. Hochwald and W. Sweldens, Differential unitary space time modulation, IEEE Trans. Commun., 48 (2000), 2041-2052.

[5]

B. Hughes, Differential space-time modulation, IEEE Trans. Inform. Theory, 46 (2000), 2567-2078.

[6]

M. A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, AMS, 1998.

[7]

F. Oggier, Cyclic algebras for noncoherent differential space-time coding, IEEE Trans. Inform. Theory, 53 (2007), 3053-3065. doi: 10.1109/TIT.2007.903152.

[8]

F. Oggier, A survey of algebraic unitary codes, in International Workshop on Coding and Cryptology, 2009, 171-187. doi: 10.1007/978-3-642-01877-0_15.

[9]

F. Oggier, J.-C. Belfiore and E. Viterbo, Cyclic Division Algebras: A Tool for Space-Time Coding, Now Publishers Inc., Hanover, USA, 2007.

[10]

F. Oggier and L. Lequeu, Families of unitary matrices achieving full diversity, in International Symposium on Information Theory, 2005, 1173-1177.

[11]

S. Pumpluen and T. Unger, Space-time block codes from nonassociative division algebras, Adv. Math. Commun., 5 (2011), 449-471. doi: 10.3934/amc.2011.5.449.

[12]

B. A. Sethuraman, Division algebras and wireless communication, Notices AMS, 57 (2010), 1432-1439.

[13]

B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras, IEEE Trans. Inform. Theory, 49 (2003), 2596-2616. doi: 10.1109/TIT.2003.817831.

[14]

A. Shokrollahi, B. Hassibi, B. M. Hochwald and W. Sweldens, Representation theory for high-rate multiple-antenna code design, IEEE Trans. Inform. Theory, 47 (2001), 2335-2367. doi: 10.1109/18.945251.

[15]

R. Slessor, Performance of Codes Based on Crossed Product Algebras, Ph.D thesis, School of Mathematics, University of Southampton, 2011.

show all references

References:
[1]

G. Berhuy and F. Oggier, Space-time codes from crossed product algebras of degree 4, in Proceedings of Applied algebra, algebraic algorithms and error-correcting codes, 2007, 90-99. doi: 10.1007/978-3-540-77224-8_13.

[2]

G. Berhuy and F. Oggier, An Introduction to Central Simple Simple Algebras and their Applications to Wireless Communications, AMS., Providence, 2013.

[3]

G. Berhuy and R. Slessor, Optimality of codes based on crossed product algebras,, preprint., (). 

[4]

B. Hochwald and W. Sweldens, Differential unitary space time modulation, IEEE Trans. Commun., 48 (2000), 2041-2052.

[5]

B. Hughes, Differential space-time modulation, IEEE Trans. Inform. Theory, 46 (2000), 2567-2078.

[6]

M. A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, AMS, 1998.

[7]

F. Oggier, Cyclic algebras for noncoherent differential space-time coding, IEEE Trans. Inform. Theory, 53 (2007), 3053-3065. doi: 10.1109/TIT.2007.903152.

[8]

F. Oggier, A survey of algebraic unitary codes, in International Workshop on Coding and Cryptology, 2009, 171-187. doi: 10.1007/978-3-642-01877-0_15.

[9]

F. Oggier, J.-C. Belfiore and E. Viterbo, Cyclic Division Algebras: A Tool for Space-Time Coding, Now Publishers Inc., Hanover, USA, 2007.

[10]

F. Oggier and L. Lequeu, Families of unitary matrices achieving full diversity, in International Symposium on Information Theory, 2005, 1173-1177.

[11]

S. Pumpluen and T. Unger, Space-time block codes from nonassociative division algebras, Adv. Math. Commun., 5 (2011), 449-471. doi: 10.3934/amc.2011.5.449.

[12]

B. A. Sethuraman, Division algebras and wireless communication, Notices AMS, 57 (2010), 1432-1439.

[13]

B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras, IEEE Trans. Inform. Theory, 49 (2003), 2596-2616. doi: 10.1109/TIT.2003.817831.

[14]

A. Shokrollahi, B. Hassibi, B. M. Hochwald and W. Sweldens, Representation theory for high-rate multiple-antenna code design, IEEE Trans. Inform. Theory, 47 (2001), 2335-2367. doi: 10.1109/18.945251.

[15]

R. Slessor, Performance of Codes Based on Crossed Product Algebras, Ph.D thesis, School of Mathematics, University of Southampton, 2011.

[1]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[2]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[3]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[4]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[5]

Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449

[6]

Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323

[7]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[8]

Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255

[9]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[10]

Yuming Zhang. On continuity equations in space-time domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[11]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[12]

Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022

[13]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[14]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[15]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[16]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[17]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[18]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[19]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[20]

Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev. The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29 (6) : 3909-3993. doi: 10.3934/era.2021068

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]