-
Previous Article
Partitions of Frobenius rings induced by the homogeneous weight
- AMC Home
- This Issue
-
Next Article
Concatenations of the hidden weighted bit function and their cryptographic properties
Algebraic space-time codes based on division algebras with a unitary involution
1. | Université Joseph Fourier, Institut Fourier, 100 rue des maths, BP 74, F-38402 Saint Martin d'Hères Cedex, France |
References:
[1] |
in Proceedings of Applied algebra, algebraic algorithms and error-correcting codes, 2007, 90-99.
doi: 10.1007/978-3-540-77224-8_13. |
[2] |
AMS., Providence, 2013. |
[3] |
G. Berhuy and R. Slessor, Optimality of codes based on crossed product algebras,, preprint., (). Google Scholar |
[4] |
IEEE Trans. Commun., 48 (2000), 2041-2052. Google Scholar |
[5] |
IEEE Trans. Inform. Theory, 46 (2000), 2567-2078. Google Scholar |
[6] |
AMS, 1998. |
[7] |
IEEE Trans. Inform. Theory, 53 (2007), 3053-3065.
doi: 10.1109/TIT.2007.903152. |
[8] |
in International Workshop on Coding and Cryptology, 2009, 171-187.
doi: 10.1007/978-3-642-01877-0_15. |
[9] |
Now Publishers Inc., Hanover, USA, 2007. Google Scholar |
[10] |
in International Symposium on Information Theory, 2005, 1173-1177. Google Scholar |
[11] |
Adv. Math. Commun., 5 (2011), 449-471.
doi: 10.3934/amc.2011.5.449. |
[12] |
Notices AMS, 57 (2010), 1432-1439. |
[13] |
IEEE Trans. Inform. Theory, 49 (2003), 2596-2616.
doi: 10.1109/TIT.2003.817831. |
[14] |
IEEE Trans. Inform. Theory, 47 (2001), 2335-2367.
doi: 10.1109/18.945251. |
[15] |
Ph.D thesis, School of Mathematics, University of Southampton, 2011. Google Scholar |
show all references
References:
[1] |
in Proceedings of Applied algebra, algebraic algorithms and error-correcting codes, 2007, 90-99.
doi: 10.1007/978-3-540-77224-8_13. |
[2] |
AMS., Providence, 2013. |
[3] |
G. Berhuy and R. Slessor, Optimality of codes based on crossed product algebras,, preprint., (). Google Scholar |
[4] |
IEEE Trans. Commun., 48 (2000), 2041-2052. Google Scholar |
[5] |
IEEE Trans. Inform. Theory, 46 (2000), 2567-2078. Google Scholar |
[6] |
AMS, 1998. |
[7] |
IEEE Trans. Inform. Theory, 53 (2007), 3053-3065.
doi: 10.1109/TIT.2007.903152. |
[8] |
in International Workshop on Coding and Cryptology, 2009, 171-187.
doi: 10.1007/978-3-642-01877-0_15. |
[9] |
Now Publishers Inc., Hanover, USA, 2007. Google Scholar |
[10] |
in International Symposium on Information Theory, 2005, 1173-1177. Google Scholar |
[11] |
Adv. Math. Commun., 5 (2011), 449-471.
doi: 10.3934/amc.2011.5.449. |
[12] |
Notices AMS, 57 (2010), 1432-1439. |
[13] |
IEEE Trans. Inform. Theory, 49 (2003), 2596-2616.
doi: 10.1109/TIT.2003.817831. |
[14] |
IEEE Trans. Inform. Theory, 47 (2001), 2335-2367.
doi: 10.1109/18.945251. |
[15] |
Ph.D thesis, School of Mathematics, University of Southampton, 2011. Google Scholar |
[1] |
Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032 |
[2] |
Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449 |
[3] |
Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441 |
[4] |
David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35 |
[5] |
Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449 |
[6] |
Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323 |
[7] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[8] |
Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255 |
[9] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[10] |
Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212 |
[11] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[12] |
Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046 |
[13] |
Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022 |
[14] |
Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323 |
[15] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[16] |
Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599 |
[17] |
Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713 |
[18] |
Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216 |
[19] |
Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257 |
[20] |
Vincent Astier, Thomas Unger. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements, 2018, 25: 16-26. doi: 10.3934/era.2018.25.003 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]