-
Previous Article
On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric
- AMC Home
- This Issue
-
Next Article
Structural properties of Costas arrays
Higher genus universally decodable matrices (UDMG)
1. | Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0395, United States |
2. | Department of Electrical and Computer Engineering, University of Colorado at Boulder, Boulder, CO 80309-0425, United States |
References:
[1] |
S. T. Dougherty and M. M Skriganov, acWilliams duality and the Rosenbloom-Tsfasman metric, Mosc. Math. J., 2 (2002), 81-97. |
[2] |
A. Faldum and W. Willems, Codes of small defect, Des. Codes Crypt., 10 (1997), 341-350.
doi: 10.1023/A:1008247720662. |
[3] |
A. Ganesan and N. Boston, Universally decodable matrices,, in Proc. 43rd Allerton Conf. Commun. Control Computing, (): 28.
|
[4] |
A. Ganesan and P. O. Vontobel, On the existence of universally decodable matrices, IEEE Trans. Inform. Theory, 53 (2007), 2572-2575.
doi: 10.1109/TIT.2007.899482. |
[5] |
R. Nielsen, A class of Sudan-decodable codes, IEEE Trans. Inform. Theory, 46 (2002), 1564-1572.
doi: 10.1109/18.850696. |
[6] |
M. Y. Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Probl. Peredachi Inform., 33 (1997), 55-63. |
[7] |
J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag, 2009.
doi: 10.1007/978-0-387-09494-6. |
[8] |
S. Tavildar and P. Viswanath, Approximately universal codes over slow-fading channels, IEEE Trans. Inform. Theory, 52 (2006), 3233-3258.
doi: 10.1109/TIT.2006.876226. |
[9] |
D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511807213. |
[10] |
P. O. Vontobel and A. Ganesan, On universally decodable matrices for space-time coding, Des. Codes Crypt., 41 (2006), 325-342.
doi: 10.1007/s10623-006-9019-4. |
[11] |
show all references
References:
[1] |
S. T. Dougherty and M. M Skriganov, acWilliams duality and the Rosenbloom-Tsfasman metric, Mosc. Math. J., 2 (2002), 81-97. |
[2] |
A. Faldum and W. Willems, Codes of small defect, Des. Codes Crypt., 10 (1997), 341-350.
doi: 10.1023/A:1008247720662. |
[3] |
A. Ganesan and N. Boston, Universally decodable matrices,, in Proc. 43rd Allerton Conf. Commun. Control Computing, (): 28.
|
[4] |
A. Ganesan and P. O. Vontobel, On the existence of universally decodable matrices, IEEE Trans. Inform. Theory, 53 (2007), 2572-2575.
doi: 10.1109/TIT.2007.899482. |
[5] |
R. Nielsen, A class of Sudan-decodable codes, IEEE Trans. Inform. Theory, 46 (2002), 1564-1572.
doi: 10.1109/18.850696. |
[6] |
M. Y. Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Probl. Peredachi Inform., 33 (1997), 55-63. |
[7] |
J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag, 2009.
doi: 10.1007/978-0-387-09494-6. |
[8] |
S. Tavildar and P. Viswanath, Approximately universal codes over slow-fading channels, IEEE Trans. Inform. Theory, 52 (2006), 3233-3258.
doi: 10.1109/TIT.2006.876226. |
[9] |
D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511807213. |
[10] |
P. O. Vontobel and A. Ganesan, On universally decodable matrices for space-time coding, Des. Codes Crypt., 41 (2006), 325-342.
doi: 10.1007/s10623-006-9019-4. |
[11] |
[1] |
Seungkook Park. Coherence of sensing matrices coming from algebraic-geometric codes. Advances in Mathematics of Communications, 2016, 10 (2) : 429-436. doi: 10.3934/amc.2016016 |
[2] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[3] |
Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021 |
[4] |
Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120 |
[5] |
Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443 |
[6] |
David Clark, Vladimir D. Tonchev. A new class of majority-logic decodable codes derived from polarity designs. Advances in Mathematics of Communications, 2013, 7 (2) : 175-186. doi: 10.3934/amc.2013.7.175 |
[7] |
Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449 |
[8] |
Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323 |
[9] |
Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83 |
[10] |
Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011 |
[11] |
T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451 |
[12] |
Gianira N. Alfarano, Martino Borello, Alessandro Neri. A geometric characterization of minimal codes and their asymptotic performance. Advances in Mathematics of Communications, 2022, 16 (1) : 115-133. doi: 10.3934/amc.2020104 |
[13] |
Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032 |
[14] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[15] |
Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93 |
[16] |
Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233 |
[17] |
Carlos Munuera, Wanderson Tenório, Fernando Torres. Locally recoverable codes from algebraic curves with separated variables. Advances in Mathematics of Communications, 2020, 14 (2) : 265-278. doi: 10.3934/amc.2020019 |
[18] |
Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167 |
[19] |
Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485 |
[20] |
Bernard Bonnard, Monique Chyba, Alain Jacquemard, John Marriott. Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance. Mathematical Control and Related Fields, 2013, 3 (4) : 397-432. doi: 10.3934/mcrf.2013.3.397 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]