\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Trisection for supersingular genus $2$ curves in characteristic $2$

Abstract Related Papers Cited by
  • By reversing reduction in divisor class arithmetic we provide efficient trisection algorithms for supersingular Jacobians of genus $2$ curves over finite fields of characteristic $2$. With our technique we obtain new results for these Jacobians: we show how to find their $3$-torsion subgroup, we prove there is none with $3$-torsion subgroup of rank $3$ and we prove that the maximal $3$-power order subgroup is isomorphic to either $\mathbb{Z}/3^{v}\mathbb{Z}$ or $(\mathbb{Z}/3^{\frac v2}\mathbb{Z})^2$ or $(\mathbb{Z}/3^{\frac v4}\mathbb{Z})^4$, where $v$ is the $3$-adic valuation $v_{3}$(#Jac(C)$(\mathbb{F}_{2^m})$). Ours are the first trisection formulae available in literature.
    Mathematics Subject Classification: Primary: 11G20, 14H40, 14H45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Cantor, Computing in the Jacobian of a Hyperelliptic curve, Math. Comp., 48 (1987), 95-101.doi: 10.1090/S0025-5718-1987-0866101-0.

    [2]

    I. Kitamura, M. Katagi and T. Takagi, A complete divisor class halving algorithm for hyperelliptic curve cryptosystems of genus two, in Information Security and Privacy, Springer, 2005, 146-157.doi: 10.1007/11506157_13.

    [3]

    J. Miret, J. Pujolàs and A. Rio, Explicit 2-power torsion of genus $2$ curves over finite fields, Adv. Math. Commun., 4 (2010), 155-165.doi: 10.3934/amc.2010.4.155.

    [4]

    F. Oort, Subvarieties of moduli spaces, Invent. Math., 24 (1974), 95-119.doi: 10.1007/BF01404301.

    [5]

    R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A, 46 (1987), 183-211.doi: 10.1016/0097-3165(87)90003-3.

    [6]

    C. Xing, On supersingular abelian varieties of dimension two over finite fields, Finite Fields Appl., 2 (1996), 407-421.doi: 10.1006/ffta.1996.0024.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return