November  2014, 8(4): 511-519. doi: 10.3934/amc.2014.8.511

Splitting of abelian varieties

1. 

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Canada M5S 2E4, Canada, Canada

Received  February 2014 Revised  September 2014 Published  November 2014

It is possible that a simple (or absolutely simple) Abelian variety defined over a number field splits modulo every prime of good reduction. This is a new problem that arises in designing crypto systems using Abelian varieties of dimension larger than $1$. We discuss what is behind this phenomenon. In particular, we discuss the question of given an absolutely simple abelian variety over a number field, whether it has simple specializations at a set of places of positive Dirichlet density? A conjectural answer to this question was given by Murty and Patankar, and we explain some recent progress towards proving the conjecture. Our result ([14], Theorem 1.1) is based on the classification of pairs $(G,V)$ consisting of a semi-simple algebraic group $G$ over a non-archimedean local field and an absolutely irreducible representation $V$ of $G$ such that $G$ admits a maximal torus acting irreducibly on $V$.
Citation: V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511
References:
[1]

Comptes Rendus Acad. Sci. Paris, 290 (1980), 701-703.  Google Scholar

[2]

Hermann, Paris, 1975.  Google Scholar

[3]

J. Pure Appl. Algebra, 155 (2001), 115-120. doi: 10.1016/S0022-4049(99)00096-1.  Google Scholar

[4]

Acta Arith., 119 (2005), 265-289. doi: 10.4064/aa119-3-3.  Google Scholar

[5]

Forum Math., 24 (2012), 99-119. doi: 10.1515/form.2011.051.  Google Scholar

[6]

in Proc. Symp. Pure Math. (eds. A. Borel and W. Casselman), AMS, Providence, 1979, 247-289.  Google Scholar

[7]

Invent. Math., 73(1983), 349-366. doi: 10.1007/BF01388432.  Google Scholar

[8]

Springer, Berlin, 1971.  Google Scholar

[9]

Invent. Math., 62 (1981), 481-502. doi: 10.1007/BF01394256.  Google Scholar

[10]

Pacific J. Math., 131 (1988),157-165. doi: 10.2140/pjm.1988.131.157.  Google Scholar

[11]

in INDOCRYPT 2001, Springer, Berlin, 2001, 91-98. doi: 10.1007/3-540-45311-3_9.  Google Scholar

[12]

Forum Math., 6 (1994), 555-565. doi: 10.1515/form.1994.6.555.  Google Scholar

[13]

Intl. Math. Res. Notices, 12 (2008), Article ID rnn 033, 27 pp. doi: 10.1093/imrn/rnn033.  Google Scholar

[14]

V. Kumar Murty and Y. Zong, Splitting of abelian varieties, elliptic minuscule pairs,, preprint, ().   Google Scholar

[15]

J. Number Theory, 16 (1983), 147-168. doi: 10.1016/0022-314X(83)90039-2.  Google Scholar

[16]

in Sieve methods, exponential sums, and their applications in number theory (eds. G.R.H. Greaves, G. Harman and M.N. Huxley), Cambridge Univ. Press, Cambridge, 1996, 325-344. doi: 10.1017/CBO9780511526091.022.  Google Scholar

[17]

in Séminaire Bourbaki, Springer, Heidelberg, 1971, 95-110.  Google Scholar

[18]

in Proc. Sympos. Pure Math. (eds. A. Borel and G. Mostow), AMS, Providence, 1966, 33-62.  Google Scholar

[19]

in Algorithmic Number Theory, Springer, Berlin, 2008, 74-87. doi: 10.1007/978-3-540-79456-1_4.  Google Scholar

show all references

References:
[1]

Comptes Rendus Acad. Sci. Paris, 290 (1980), 701-703.  Google Scholar

[2]

Hermann, Paris, 1975.  Google Scholar

[3]

J. Pure Appl. Algebra, 155 (2001), 115-120. doi: 10.1016/S0022-4049(99)00096-1.  Google Scholar

[4]

Acta Arith., 119 (2005), 265-289. doi: 10.4064/aa119-3-3.  Google Scholar

[5]

Forum Math., 24 (2012), 99-119. doi: 10.1515/form.2011.051.  Google Scholar

[6]

in Proc. Symp. Pure Math. (eds. A. Borel and W. Casselman), AMS, Providence, 1979, 247-289.  Google Scholar

[7]

Invent. Math., 73(1983), 349-366. doi: 10.1007/BF01388432.  Google Scholar

[8]

Springer, Berlin, 1971.  Google Scholar

[9]

Invent. Math., 62 (1981), 481-502. doi: 10.1007/BF01394256.  Google Scholar

[10]

Pacific J. Math., 131 (1988),157-165. doi: 10.2140/pjm.1988.131.157.  Google Scholar

[11]

in INDOCRYPT 2001, Springer, Berlin, 2001, 91-98. doi: 10.1007/3-540-45311-3_9.  Google Scholar

[12]

Forum Math., 6 (1994), 555-565. doi: 10.1515/form.1994.6.555.  Google Scholar

[13]

Intl. Math. Res. Notices, 12 (2008), Article ID rnn 033, 27 pp. doi: 10.1093/imrn/rnn033.  Google Scholar

[14]

V. Kumar Murty and Y. Zong, Splitting of abelian varieties, elliptic minuscule pairs,, preprint, ().   Google Scholar

[15]

J. Number Theory, 16 (1983), 147-168. doi: 10.1016/0022-314X(83)90039-2.  Google Scholar

[16]

in Sieve methods, exponential sums, and their applications in number theory (eds. G.R.H. Greaves, G. Harman and M.N. Huxley), Cambridge Univ. Press, Cambridge, 1996, 325-344. doi: 10.1017/CBO9780511526091.022.  Google Scholar

[17]

in Séminaire Bourbaki, Springer, Heidelberg, 1971, 95-110.  Google Scholar

[18]

in Proc. Sympos. Pure Math. (eds. A. Borel and G. Mostow), AMS, Providence, 1966, 33-62.  Google Scholar

[19]

in Algorithmic Number Theory, Springer, Berlin, 2008, 74-87. doi: 10.1007/978-3-540-79456-1_4.  Google Scholar

[1]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[2]

Hyeng Keun Koo, Shanjian Tang, Zhou Yang. A Dynkin game under Knightian uncertainty. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5467-5498. doi: 10.3934/dcds.2015.35.5467

[3]

Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515

[4]

Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327

[5]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[6]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[7]

Rüdiger Achilles, Andrea Bonfiglioli, Jacob Katriel. The $\boldsymbol{q}$-deformed Campbell-Baker-Hausdorff-Dynkin theorem. Electronic Research Announcements, 2015, 22: 32-45. doi: 10.3934/era.2015.22.32

[8]

Bachir Bar, Tewfik Sari. The operating diagram for a model of competition in a chemostat with an external lethal inhibitor. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2093-2120. doi: 10.3934/dcdsb.2019203

[9]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[10]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[11]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[12]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[13]

Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110.

[14]

Chad Schoen. An arithmetic ball quotient surface whose Albanese variety is not of CM type. Electronic Research Announcements, 2014, 21: 132-136. doi: 10.3934/era.2014.21.132

[15]

Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold. Abelian versus non-Abelian Bäcklund charts: Some remarks. Evolution Equations & Control Theory, 2019, 8 (1) : 43-55. doi: 10.3934/eect.2019003

[16]

Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933

[17]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[18]

S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361

[19]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[20]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]