\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sets of zero-difference balanced functions and their applications

Abstract Related Papers Cited by
  • Zero-difference balanced (ZDB) functions can be employed in many applications, e.g., optimal constant composition codes, optimal and perfect difference systems of sets, optimal frequency hopping sequences, etc. In this paper, two results are summarized to characterize ZDB functions, among which a lower bound is used to achieve optimality in applications and determine the size of preimage sets of ZDB functions. As the main contribution, a generic construction of ZDB functions is presented, and many new classes of ZDB functions can be generated. This construction is then extended to construct a set of ZDB functions, in which any two ZDB functions are related uniformly. Furthermore, some applications of such sets of ZDB functions are also introduced.
    Mathematics Subject Classification: Primary: 05B10; Secondary: 94A55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Antweiler and L. Bömer, Complex sequences over GF$(p^M)$ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.doi: 10.1109/18.108256.

    [2]

    C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.doi: 10.1109/TIT.2005.847722.

    [3]

    L. Carlitz and C. Wells, The number of solutions of a special system of equations in a finite field, Acta Arith., 12 (1966/1967), 77-84.

    [4]

    P. Dembowski and T. G. Ostrom, Planes of order $n$ with collineation groups of order $n^2$, Math. Z., 103 (1968), 239-258.doi: 10.1007/BF01111042.

    [5]

    C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inform. Theory, 54 (2008), 5766-5770.doi: 10.1109/TIT.2008.2006420.

    [6]

    C. Ding, Optimal and perfect difference systems of sets, J. Combin. Theory Ser. A, 116 (2009), 109-119.doi: 10.1016/j.jcta.2008.05.007.

    [7]

    C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.doi: 10.1109/TIT.2007.899545.

    [8]

    C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory Practice, 6 (2012), 3-19.doi: 10.1080/15598608.2012.647479.

    [9]

    C. Ding and J. Yin, Algebraic constructions of constant composition codes, IEEE Trans. Inform. Theory, 51 (2005), 1585-1589.doi: 10.1109/TIT.2005.844087.

    [10]

    C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inform. Theory, 51 (2005), 3671-3674.doi: 10.1109/TIT.2005.855612.

    [11]

    C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.doi: 10.1109/TIT.2008.926410.

    [12]

    F.-W. Fu, A. J. H. Vinck and S.-Y. Shen, On the constructions of constant-weight codes, IEEE Trans. Inform. Theory, 44 (1998), 328-333.doi: 10.1109/18.651060.

    [13]

    R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.doi: 10.1109/TIT.2004.834783.

    [14]

    G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.doi: 10.1016/j.jcta.2006.03.019.

    [15]

    G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.doi: 10.1109/TIT.2008.2009856.

    [16]

    S. W. Golomb and G. Gong, Signal Design for Good Correlation, for Wireless Communication, Cryptography, and Radar, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9780511546907.

    [17]

    P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, 34 (1988), 146-151.doi: 10.1109/18.2616.

    [18]

    A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94.

    [19]

    V. I. Levenšteĭn, A certain method of constructing quasilinear codes that guarantee synchronization in the presence of errors, Problemy Peredači Informacii, 7 (1971), 30-40.

    [20]

    V. I. Levenšteĭn, Combinatorial problems motivated by comma-free codes, J. Combin. Des., 12 (2004), 184-196.doi: 10.1002/jcd.10071.

    [21]

    R. Lidl and H. Niederreiter, Finite Fields, Second edition, Cambridge University Press, Cambridge, 1997.

    [22]

    Y. Luo, F.-W. Fu, A. J. H. Vinck and W. Chen, On constant-composition codes over $Z_q$, IEEE Trans. Inform. Theory, 49 (2003), 3010-3016.doi: 10.1109/TIT.2003.819339.

    [23]

    H. Niederreiter and A. Winterhof, Cyclotomic $\mathfrakR $-orthomorphisms of finite fields, Discrete Math., 295 (2005), 161-171.doi: 10.1016/j.disc.2004.12.011.

    [24]

    K. Nyberg, Perfect nonlinear S-boxes, in Advances in Cryptology-EUROCRYPT '91, Springer, Berlin, 1991, 378-386.doi: 10.1007/3-540-46416-6_32.

    [25]

    D. Peng and P. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.doi: 10.1109/TIT.2004.833362.

    [26]

    D. V. Sarwate, Comments on "Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences'' by D. Peng and P. Fan, IEEE Trans. Inform. Theory, 51 (2005), 1615.doi: 10.1109/TIT.2005.844055.

    [27]

    M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, revised edition, McGraw-Hill Inc., New York, 2002.

    [28]

    H. Wang, A new bound for difference systems of sets, J. Combin. Math. Combin. Comput., 58 (2006), 161-167.

    [29]

    Q. Wang, Optimal sets of frequency hopping sequences with large linear spans, IEEE Trans. Inform. Theory, 56 (2010), 1729-1736.doi: 10.1109/TIT.2010.2040874.

    [30]

    Z. Zhou, X. Tang, D. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inform. Theory, 58 (2012), 139-145.doi: 10.1109/TIT.2011.2171418.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return