Citation: |
[1] |
M. Antweiler and L. Bömer, Complex sequences over GF$(p^M)$ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.doi: 10.1109/18.108256. |
[2] |
C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.doi: 10.1109/TIT.2005.847722. |
[3] |
L. Carlitz and C. Wells, The number of solutions of a special system of equations in a finite field, Acta Arith., 12 (1966/1967), 77-84. |
[4] |
P. Dembowski and T. G. Ostrom, Planes of order $n$ with collineation groups of order $n^2$, Math. Z., 103 (1968), 239-258.doi: 10.1007/BF01111042. |
[5] |
C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inform. Theory, 54 (2008), 5766-5770.doi: 10.1109/TIT.2008.2006420. |
[6] |
C. Ding, Optimal and perfect difference systems of sets, J. Combin. Theory Ser. A, 116 (2009), 109-119.doi: 10.1016/j.jcta.2008.05.007. |
[7] |
C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.doi: 10.1109/TIT.2007.899545. |
[8] |
C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory Practice, 6 (2012), 3-19.doi: 10.1080/15598608.2012.647479. |
[9] |
C. Ding and J. Yin, Algebraic constructions of constant composition codes, IEEE Trans. Inform. Theory, 51 (2005), 1585-1589.doi: 10.1109/TIT.2005.844087. |
[10] |
C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inform. Theory, 51 (2005), 3671-3674.doi: 10.1109/TIT.2005.855612. |
[11] |
C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.doi: 10.1109/TIT.2008.926410. |
[12] |
F.-W. Fu, A. J. H. Vinck and S.-Y. Shen, On the constructions of constant-weight codes, IEEE Trans. Inform. Theory, 44 (1998), 328-333.doi: 10.1109/18.651060. |
[13] |
R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.doi: 10.1109/TIT.2004.834783. |
[14] |
G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.doi: 10.1016/j.jcta.2006.03.019. |
[15] |
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.doi: 10.1109/TIT.2008.2009856. |
[16] |
S. W. Golomb and G. Gong, Signal Design for Good Correlation, for Wireless Communication, Cryptography, and Radar, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9780511546907. |
[17] |
P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, 34 (1988), 146-151.doi: 10.1109/18.2616. |
[18] |
A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94. |
[19] |
V. I. Levenšteĭn, A certain method of constructing quasilinear codes that guarantee synchronization in the presence of errors, Problemy Peredači Informacii, 7 (1971), 30-40. |
[20] |
V. I. Levenšteĭn, Combinatorial problems motivated by comma-free codes, J. Combin. Des., 12 (2004), 184-196.doi: 10.1002/jcd.10071. |
[21] |
R. Lidl and H. Niederreiter, Finite Fields, Second edition, Cambridge University Press, Cambridge, 1997. |
[22] |
Y. Luo, F.-W. Fu, A. J. H. Vinck and W. Chen, On constant-composition codes over $Z_q$, IEEE Trans. Inform. Theory, 49 (2003), 3010-3016.doi: 10.1109/TIT.2003.819339. |
[23] |
H. Niederreiter and A. Winterhof, Cyclotomic $\mathfrakR $-orthomorphisms of finite fields, Discrete Math., 295 (2005), 161-171.doi: 10.1016/j.disc.2004.12.011. |
[24] |
K. Nyberg, Perfect nonlinear S-boxes, in Advances in Cryptology-EUROCRYPT '91, Springer, Berlin, 1991, 378-386.doi: 10.1007/3-540-46416-6_32. |
[25] |
D. Peng and P. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.doi: 10.1109/TIT.2004.833362. |
[26] |
D. V. Sarwate, Comments on "Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences'' by D. Peng and P. Fan, IEEE Trans. Inform. Theory, 51 (2005), 1615.doi: 10.1109/TIT.2005.844055. |
[27] |
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, revised edition, McGraw-Hill Inc., New York, 2002. |
[28] |
H. Wang, A new bound for difference systems of sets, J. Combin. Math. Combin. Comput., 58 (2006), 161-167. |
[29] |
Q. Wang, Optimal sets of frequency hopping sequences with large linear spans, IEEE Trans. Inform. Theory, 56 (2010), 1729-1736.doi: 10.1109/TIT.2010.2040874. |
[30] |
Z. Zhou, X. Tang, D. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inform. Theory, 58 (2012), 139-145.doi: 10.1109/TIT.2011.2171418. |