# American Institute of Mathematical Sciences

February  2015, 9(1): 1-7. doi: 10.3934/amc.2015.9.1

## Existence conditions for self-orthogonal negacyclic codes over finite fields

 1 Department of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China 2 School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China 3 School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore

Received  May 2013 Revised  April 2014 Published  February 2015

In this paper, we obtain necessary and sufficient conditions for the nonexistence of nonzero self-orthogonal negacyclic codes over a finite field, of length relatively prime to the characteristic of the underlying field.
Citation: Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1
##### References:
 [1] G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54. doi: 10.1016/j.ffa.2012.10.003. [2] T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943. doi: 10.1016/j.ffa.2008.05.004. [3] I. F. Blake, S. Gao and R. C. Mullin, Explicit factorization of $X^{2^k}+1$ over $F_p$ with prime $p\equiv3 (mod 4)$, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 89-94. doi: 10.1007/BF01386832. [4] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012) 133-143. doi: 10.1016/j.ffa.2011.07.003. [5] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math., 313 (2013), 983-991. doi: 10.1016/j.disc.2013.01.024. [6] W. Fu and T. Feng, On self-orthogonal group ring codes, Designs Codes Crypt., 50 (2009), 203-214. doi: 10.1007/s10623-008-9224-4. [7] W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490. doi: 10.1016/j.ffa.2005.05.012. [8] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003. [9] Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 57 (2011), 2243-2251. doi: 10.1109/TIT.2010.2092415. [10] X. Kai and S. Zhu, On cyclic self-dual codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509-525. doi: 10.1007/s00200-008-0086-9. [11] L. Kathuria and M. Raka, Existence of cyclic self-orthogonal codes: a note on a result of Vera Pless, Adv. Math. Commun., 6 (2012), 499-503. doi: 10.3934/amc.2012.6.499. [12] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 2008. [13] V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory, in Proc. Sympos. Appl. Math., Amer. Math. Soc., 1992, 91-104. [14] N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inf. Theory, 29 (1983), 364-367. doi: 10.1109/TIT.1983.1056682. [15] Z. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing, 2003. [16] W. Willems, A note on self-dual group codes, IEEE Trans. Inf. Theory, 48 (2002), 3107-3109. doi: 10.1109/TIT.2002.805076.

show all references

##### References:
 [1] G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54. doi: 10.1016/j.ffa.2012.10.003. [2] T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943. doi: 10.1016/j.ffa.2008.05.004. [3] I. F. Blake, S. Gao and R. C. Mullin, Explicit factorization of $X^{2^k}+1$ over $F_p$ with prime $p\equiv3 (mod 4)$, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 89-94. doi: 10.1007/BF01386832. [4] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012) 133-143. doi: 10.1016/j.ffa.2011.07.003. [5] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math., 313 (2013), 983-991. doi: 10.1016/j.disc.2013.01.024. [6] W. Fu and T. Feng, On self-orthogonal group ring codes, Designs Codes Crypt., 50 (2009), 203-214. doi: 10.1007/s10623-008-9224-4. [7] W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490. doi: 10.1016/j.ffa.2005.05.012. [8] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003. [9] Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 57 (2011), 2243-2251. doi: 10.1109/TIT.2010.2092415. [10] X. Kai and S. Zhu, On cyclic self-dual codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509-525. doi: 10.1007/s00200-008-0086-9. [11] L. Kathuria and M. Raka, Existence of cyclic self-orthogonal codes: a note on a result of Vera Pless, Adv. Math. Commun., 6 (2012), 499-503. doi: 10.3934/amc.2012.6.499. [12] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 2008. [13] V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory, in Proc. Sympos. Appl. Math., Amer. Math. Soc., 1992, 91-104. [14] N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inf. Theory, 29 (1983), 364-367. doi: 10.1109/TIT.1983.1056682. [15] Z. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing, 2003. [16] W. Willems, A note on self-dual group codes, IEEE Trans. Inf. Theory, 48 (2002), 3107-3109. doi: 10.1109/TIT.2002.805076.
 [1] María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018 [2] Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 [3] Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 [4] Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 [5] Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 [6] Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499 [7] Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437 [8] Andrea Seidl, Stefan Wrzaczek. Opening the source code: The threat of forking. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022010 [9] Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 [10] Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 [11] Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 [12] Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 [13] Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889 [14] M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407 [15] Jorge P. Arpasi. On the non-Abelian group code capacity of memoryless channels. Advances in Mathematics of Communications, 2020, 14 (3) : 423-436. doi: 10.3934/amc.2020058 [16] Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83 [17] José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149 [18] Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 [19] Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 [20] Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

2021 Impact Factor: 1.015