\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Information--bit error rate and false positives in an MDS code

Abstract Related Papers Cited by
  • In this paper, a computation of the input-redundancy weight enumerator is presented. This is used to improve the theoretical approximation of the information--bit error rate, in terms of the channel bit--error rate, in a block transmission through a discrete memoryless channel. Since a bounded distance reproducing encoder is assumed, we introduce the here-called false positive, a decoding failure with no information-symbol error, and we estimate the probability that this event occurs. As a consequence, a new performance analysis of an MDS code is proposed.
    Mathematics Subject Classification: Primary: 94B70, 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Desset, B. Macq and L. Vandendorpe, Computing the word-, symbol-, and bit-error rates for block error-correcting codes, IEEE Trans. Commun., 52 (2004), 910-921.doi: 10.1109/TCOMM.2004.829509.

    [2]

    R. Dodunekova and S. M. Dodunekov, Sufficient conditions for good and proper error-detecting codes, IEEE Trans. Inf. Theory, 43 (1997), 2023-2026.doi: 10.1109/18.641570.

    [3]

    R. Dodunekova and S. M. Dodunekov, The MMD codes are proper for error detection, IEEE Trans. Inf. Theory, 48 (2002), 3109-3111.doi: 10.1109/TIT.2002.805082.

    [4]

    R. Dodunekova, S. M. Dodunekov and E. Nikolova, A survey on proper codes, Discrete Appl. Math., 156 (2008), 1499-1509.doi: 10.1016/j.dam.2005.06.014.

    [5]

    M. El-Khamy, New Approaches to the Analysis and Design of Reed-Solomon Related Codes, Ph.D thesis, California Institute of Technology, 2007.

    [6]

    M. El-Khamy and R. J. McEliece, Bounds on the average binary minimum distance and the maximum likelihood performance of Reed Solomon codes, in 42nd Allerton Conf. Commun. Control Comput., 2004.

    [7]

    M. El-Khamy and R. J. McEliece, The partition weight enumerator of MDS codes and its applications, in Int. Symp. Inf. Theory, 2005, 926-930.doi: 10.1109/ISIT.2005.1523473.

    [8]

    A. Faldum, J. Lafuente, G. Ochoa and W. Willems, Error probabilities for bounded distance decoding, Des. Codes Crypt., 40 (2006), 237-252.doi: 10.1007/s10623-006-0010-x.

    [9]

    M. P. C. Fossorier, Critical point for maximum likelihood decoding of linear block codes, IEEE Commun. Letters, 9 (2005), 817-819.doi: 10.1109/LCOMM.2005.1506713.

    [10]

    J. Han, P. H. Siegel and P. Lee, On the probability of undetected error for overextended Reed-Solomon codes, IEEE Trans. Inf. Theory, 52 (2006), 3662-3669.doi: 10.1109/ITW.2006.1633800.

    [11]

    T. Kasami and S. Lin, On the probability of undetected error for the maximum distance separable codes, IEEE Trans. Commun., COM-32 (1984), 998-1006.doi: 10.1109/TCOM.1984.1096175.

    [12]

    J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J., 42 (1963), 79-94.doi: 10.1002/j.1538-7305.1963.tb04003.x.

    [13]

    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland Publishing Co., 1977.

    [14]

    J. Riordan, Combinatorial Identities, Robert E. Krieger Publishing Co., Huntington, New York, 1979.

    [15]

    S. Roman, Coding and Information Theory, Springer-Verlag, New York, 1992.

    [16]

    W. A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team, 2012, available at http://www.sagemath.org

    [17]

    D. Torrieri, The information-bit error rate for block codes, IEEE Trans. Commun., COM-32 (1984), 474-476.doi: 10.1109/TCOM.1984.1096082.

    [18]

    D. Torrieri, Information-bit, information-symbol, and decoded-symbol error rates for linear block codes, IEEE Trans. Commun., 36 (1988), 613-617.doi: 10.1109/26.1477.

    [19]

    J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd edition, Cambridge University Press, 2001.doi: 10.1017/CBO9780511987045.

    [20]

    K.-P. Yar, D.-S. Yoo and W. Stark, Performance of RS coded $M$-ary modulation with and without symbol overlapping, IEEE Trans. Commun., 56 (2008), 445-453.doi: 10.1109/TCOMM.2008.050229.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return