\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence

Abstract Related Papers Cited by
  • Let $p$ be an odd prime, $n=2m$, and $n/\gcd(k,n)$ be odd. In this paper, we study the cross correlation between a $p$-ary $m$-sequence $(s_{t})$ of period $p^{n}-1$ and its decimated sequence $(s_{dt})$ where $d$ satisfies $d(p^k+1)\equiv p^m+1 \pmod {p^n-1}$. Our results show that the cross-correlation function is six-valued and the distribution of the cross correlation is also completely determined.
    Mathematics Subject Classification: Primary: 94A55; Secondary:11B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. W. Bluher, On $x^{q+1}+ax+b$, Finite Fields Appl., 10 (2004), 285-305.doi: 10.1016/j.ffa.2003.08.004.

    [2]

    W. Chen, J. Luo and Y. Tang, Exponential sums from half quadratic forms and its applications, in Proc. ISIT'14, 2014, 3145-3149.

    [3]

    S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a ternary m-sequence of period $3^{4k+2}-1$ and its decimated sequence by $(3^{2k+1}+1)^{2}$ over 8, in Proc. ISIT'10, 2010, 1268-1271.

    [4]

    S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^m+1)^2}{2(p+1)}$, IEEE Trans. Inf. Theory, 58 (2012), 1873-1879.doi: 10.1109/TIT.2011.2177573.

    [5]

    H. Dobbertin, P. Felke and T. Helleseth, Niho type cross correlation functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inf. Theory, 52 (2006), 613-627.doi: 10.1109/TIT.2005.862094.

    [6]

    T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence, Discrete Math., 16 (1976), 209-232.

    [7]

    R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Boston, 1983.

    [8]

    J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.doi: 10.1109/TIT.2008.2006424.

    [9]

    J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.doi: 10.1109/TIT.2008.2006394.

    [10]

    J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation, in Proc. IWSDA'11, 2011, 44-47.

    [11]

    J, Luo, Y. Tang and H. Wang, Exponential sums, cyclic codes and sequences: the odd characteristic Kasami case, preprint, arXiv:0902.4508

    [12]

    G. J. Ness, T. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, 52 (2006), 2241-2247.doi: 10.1109/TIT.2006.872857.

    [13]

    E. Y. Seo, Y. S. Kim, J. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$, IEEE Trans. Inf. Theory, 54 (2008),3140-3149.doi: 10.1109/TIT.2008.924694.

    [14]

    Y. Sun, Z. Wang, H. Li and T. Yan, The cross-correlation distribution of a $p$-ary m-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^k+1)^2}{2(p^e+1)}$, Adv. Math. Commun., 7 (2013), 409-424.doi: 10.3934/amc.2013.7.409.

    [15]

    Y. Xia, C. Li, X. Zeng and T. Helleseth, Some results on cross-correlation distribution between a $p$-ary $m$-sequence and its decimated sequences, IEEE Trans. Inf. Theory, 60 (2014), 7368-7381.doi: 10.1109/TIT.2014.2350775.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return