-
Previous Article
The nonassociative algebras used to build fast-decodable space-time block codes
- AMC Home
- This Issue
-
Next Article
An enumeration of the equivalence classes of self-dual matrix codes
Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields
1. | Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India, India |
References:
[1] |
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005. |
[2] |
G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.
doi: 10.1016/j.ffa.2012.10.003. |
[3] |
T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.
doi: 10.1016/j.ffa.2008.05.004. |
[4] |
H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.
doi: 10.1016/j.ffa.2011.07.003. |
[5] |
H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Mathematics, 313 (2013), 983-991.
doi: 10.1016/j.disc.2013.01.024. |
[6] |
H. Q. Dinh, On repeated-root constacyclic codes of length $4p^s$, Asian-European J. Math., 6 (2013), 1350020 [25 pages].
doi: 10.1142/S1793557113500204. |
[7] |
H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[8] |
W. Cary Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077. |
[9] |
Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 57 (2011), 2243-2251.
doi: 10.1109/TIT.2010.2092415. |
[10] |
J. S. Leon and V. Pless, Self-dual codes over GF(5), Journal of Combinatorial Theory, Series A, 32 (1982), 178-194.
doi: 10.1016/0097-3165(82)90019-X. |
[11] |
F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977. |
[12] |
V. Pless, A classification of self-orthogonal codes over GF(2), Discrete Mathematics, 3 (1972), 209-246.
doi: 10.1016/0012-365X(72)90034-9. |
show all references
References:
[1] |
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005. |
[2] |
G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.
doi: 10.1016/j.ffa.2012.10.003. |
[3] |
T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.
doi: 10.1016/j.ffa.2008.05.004. |
[4] |
H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.
doi: 10.1016/j.ffa.2011.07.003. |
[5] |
H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Mathematics, 313 (2013), 983-991.
doi: 10.1016/j.disc.2013.01.024. |
[6] |
H. Q. Dinh, On repeated-root constacyclic codes of length $4p^s$, Asian-European J. Math., 6 (2013), 1350020 [25 pages].
doi: 10.1142/S1793557113500204. |
[7] |
H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[8] |
W. Cary Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077. |
[9] |
Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 57 (2011), 2243-2251.
doi: 10.1109/TIT.2010.2092415. |
[10] |
J. S. Leon and V. Pless, Self-dual codes over GF(5), Journal of Combinatorial Theory, Series A, 32 (1982), 178-194.
doi: 10.1016/0097-3165(82)90019-X. |
[11] |
F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977. |
[12] |
V. Pless, A classification of self-orthogonal codes over GF(2), Discrete Mathematics, 3 (1972), 209-246.
doi: 10.1016/0012-365X(72)90034-9. |
[1] |
Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031 |
[2] |
Somphong Jitman, Supawadee Prugsapitak, Madhu Raka. Some generalizations of good integers and their applications in the study of self-dual negacyclic codes. Advances in Mathematics of Communications, 2020, 14 (1) : 35-51. doi: 10.3934/amc.2020004 |
[3] |
Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1 |
[4] |
Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229 |
[5] |
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267 |
[6] |
Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047 |
[7] |
Steven Dougherty, Adrian Korban, Serap Șahinkaya, Deniz Ustun. Binary self-dual and LCD codes from generator matrices constructed from two group ring elements by a heuristic search scheme. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022036 |
[8] |
Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002 |
[9] |
Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023 |
[10] |
Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021070 |
[11] |
Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251 |
[12] |
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433 |
[13] |
Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23 |
[14] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[15] |
Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393 |
[16] |
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 |
[17] |
Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311 |
[18] |
Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415 |
[19] |
Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037 |
[20] |
Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]