-
Previous Article
Derived and residual subspace designs
- AMC Home
- This Issue
-
Next Article
Multiple coverings of the farthest-off points with small density from projective geometry
Polar codes for distributed hierarchical source coding
1. | Department of ECE and Institute for Systems Research, University of Maryland, College Park, MD 20742, United States |
2. | Dept. of ECE and Institute for Systems Research, University of Maryland, College Park, MD 20742 |
References:
[1] |
E. Abbe and E. Telatar, Polar codes for the $m$-user multiple access channel, IEEE Trans. Inform. Theory, 58 (2012), 5437-5448.
doi: 10.1109/TIT.2012.2201374. |
[2] |
R. Ahlswede, The rate-distortion region for multiple descriptions without excess rates, IEEE Trans. Inform. Theory, 31 (1985), 721-726.
doi: 10.1109/TIT.1985.1057102. |
[3] |
E. Arikan, Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inform. Theory, 55 (2009), 3051-3073.
doi: 10.1109/TIT.2009.2021379. |
[4] |
E. Arikan, Source polarization, in Proc. IEEE Int. Symp. Inf. Theory, Austin, 2010, 899-903.
doi: 10.1109/ISIT.2010.5513567. |
[5] |
A. El Gamal and T. Cover, Achievable rates for multiple descriptions, IEEE Trans. Inform. Theory, 28 (1991), 269-275.
doi: 10.1109/TIT.1982.1056588. |
[6] |
W. Equitz and T. Cover, Successive refinement of information, IEEE Trans. Inform. Theory, 37 (1991), 269-275.
doi: 10.1109/18.75242. |
[7] |
T. C. Gulcu and A. Barg, Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component,, preprint, ().
|
[8] |
T. C. Gulcu and A. Barg, Interactive function computation via polar coding,, preprint, ().
|
[9] |
J. Honda and H. Yamamoto, Polar coding without alphabet extension for asymmetric models, IEEE Trans. Inform. Theory, 59 (2013), 7829-7838.
doi: 10.1109/TIT.2013.2282305. |
[10] |
S. B. Korada, Polar Codes for Channel and Source Coding, Ph.D thesis, EPFL, 2009.
doi: 10.5075/epfl-thesis-4461. |
[11] |
V. N. Koshelev, Hierarchical coding of discrete sources, Probl. Inform. Trans., 16 (1980), 11-19. |
[12] |
V. N. Koshelev, Estimation of mean error for a discrete successive-approximation scheme, Probl. Inform. Trans., 17 (1981), 20-33. |
[13] |
V. N. Koshelev, Divisibility of discrete sources with symbol-wise additive error measure, Probl. Inform. Trans., 30 (1994), 31-50. |
[14] |
H. Mahdavifar and A. Vardy, Achieving the secrecy capacity of wiretap channels using polar codes, IEEE Trans. Inform. Theory, 57 (2011), 6428-6443.
doi: 10.1109/TIT.2011.2162275. |
[15] |
M. Mondelli, H. Hassani, I. Sason and R. L. Urbanke, Achieving Marton's region for broadcast channels using polar codes, IEEE Trans. Inform. Theory, 61 (2015), 783-800.
doi: 10.1109/TIT.2014.2368555. |
[16] |
R. Mori and T. Tanaka, Source and channel polarization over finite fields and Reed-Solomon matrices, IEEE Trans. Inform. Theory, 60 (2014), 2720-2736.
doi: 10.1109/TIT.2014.2312181. |
[17] |
W. Park and A. Barg, Polar codes for $q$-ary channels, $q=2^r$, IEEE Trans. Inform. Theory, 59 (2013), 955-969.
doi: 10.1109/TIT.2012.2219035. |
[18] |
B. Rimoldi, Successive refinement of information: Characterization of achievable rates, IEEE Trans. Inform. Theory, 40 (1994), 253-259.
doi: 10.1109/18.272493. |
[19] |
A. Sahebi and S. S. Pradhan, Polar codes for some multi-terminal communications problems,, preprint, ().
|
[20] |
Y. Steinberg and N. Merhav, On successive refinement for the Wyner-Ziv problem, IEEE Trans. Inform. Theory, 50 (2004), 1636-1654.
doi: 10.1109/TIT.2004.831781. |
[21] |
A. Wyner and J. Ziv, The rate-distortion function for source coding with side information at the decoder, IEEE Trans. Inform. Theory, 22 (1976), 1-10.
doi: 10.1109/TIT.1976.1055508. |
[22] |
Y. Zhang, S. Dumitrescu, J. Chen and Z. Sun, LDGM-based codes for successive refinement, in 47th Ann. Allerton Conf. Commun. Control Comput., 2009, 1518-1524.
doi: 10.1109/ALLERTON.2009.5394494. |
show all references
References:
[1] |
E. Abbe and E. Telatar, Polar codes for the $m$-user multiple access channel, IEEE Trans. Inform. Theory, 58 (2012), 5437-5448.
doi: 10.1109/TIT.2012.2201374. |
[2] |
R. Ahlswede, The rate-distortion region for multiple descriptions without excess rates, IEEE Trans. Inform. Theory, 31 (1985), 721-726.
doi: 10.1109/TIT.1985.1057102. |
[3] |
E. Arikan, Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inform. Theory, 55 (2009), 3051-3073.
doi: 10.1109/TIT.2009.2021379. |
[4] |
E. Arikan, Source polarization, in Proc. IEEE Int. Symp. Inf. Theory, Austin, 2010, 899-903.
doi: 10.1109/ISIT.2010.5513567. |
[5] |
A. El Gamal and T. Cover, Achievable rates for multiple descriptions, IEEE Trans. Inform. Theory, 28 (1991), 269-275.
doi: 10.1109/TIT.1982.1056588. |
[6] |
W. Equitz and T. Cover, Successive refinement of information, IEEE Trans. Inform. Theory, 37 (1991), 269-275.
doi: 10.1109/18.75242. |
[7] |
T. C. Gulcu and A. Barg, Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component,, preprint, ().
|
[8] |
T. C. Gulcu and A. Barg, Interactive function computation via polar coding,, preprint, ().
|
[9] |
J. Honda and H. Yamamoto, Polar coding without alphabet extension for asymmetric models, IEEE Trans. Inform. Theory, 59 (2013), 7829-7838.
doi: 10.1109/TIT.2013.2282305. |
[10] |
S. B. Korada, Polar Codes for Channel and Source Coding, Ph.D thesis, EPFL, 2009.
doi: 10.5075/epfl-thesis-4461. |
[11] |
V. N. Koshelev, Hierarchical coding of discrete sources, Probl. Inform. Trans., 16 (1980), 11-19. |
[12] |
V. N. Koshelev, Estimation of mean error for a discrete successive-approximation scheme, Probl. Inform. Trans., 17 (1981), 20-33. |
[13] |
V. N. Koshelev, Divisibility of discrete sources with symbol-wise additive error measure, Probl. Inform. Trans., 30 (1994), 31-50. |
[14] |
H. Mahdavifar and A. Vardy, Achieving the secrecy capacity of wiretap channels using polar codes, IEEE Trans. Inform. Theory, 57 (2011), 6428-6443.
doi: 10.1109/TIT.2011.2162275. |
[15] |
M. Mondelli, H. Hassani, I. Sason and R. L. Urbanke, Achieving Marton's region for broadcast channels using polar codes, IEEE Trans. Inform. Theory, 61 (2015), 783-800.
doi: 10.1109/TIT.2014.2368555. |
[16] |
R. Mori and T. Tanaka, Source and channel polarization over finite fields and Reed-Solomon matrices, IEEE Trans. Inform. Theory, 60 (2014), 2720-2736.
doi: 10.1109/TIT.2014.2312181. |
[17] |
W. Park and A. Barg, Polar codes for $q$-ary channels, $q=2^r$, IEEE Trans. Inform. Theory, 59 (2013), 955-969.
doi: 10.1109/TIT.2012.2219035. |
[18] |
B. Rimoldi, Successive refinement of information: Characterization of achievable rates, IEEE Trans. Inform. Theory, 40 (1994), 253-259.
doi: 10.1109/18.272493. |
[19] |
A. Sahebi and S. S. Pradhan, Polar codes for some multi-terminal communications problems,, preprint, ().
|
[20] |
Y. Steinberg and N. Merhav, On successive refinement for the Wyner-Ziv problem, IEEE Trans. Inform. Theory, 50 (2004), 1636-1654.
doi: 10.1109/TIT.2004.831781. |
[21] |
A. Wyner and J. Ziv, The rate-distortion function for source coding with side information at the decoder, IEEE Trans. Inform. Theory, 22 (1976), 1-10.
doi: 10.1109/TIT.1976.1055508. |
[22] |
Y. Zhang, S. Dumitrescu, J. Chen and Z. Sun, LDGM-based codes for successive refinement, in 47th Ann. Allerton Conf. Commun. Control Comput., 2009, 1518-1524.
doi: 10.1109/ALLERTON.2009.5394494. |
[1] |
Xueling Zhou, Meixia Li, Haitao Che. Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2557-2572. doi: 10.3934/jimo.2020082 |
[2] |
Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577 |
[3] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems and Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[4] |
Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001 |
[5] |
Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601 |
[6] |
Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial and Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451 |
[7] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[8] |
Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic and Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415 |
[9] |
Sara Bernardi, Gissell Estrada-Rodriguez, Heiko Gimperlein, Kevin J. Painter. Macroscopic descriptions of follower-leader systems. Kinetic and Related Models, 2021, 14 (6) : 981-1002. doi: 10.3934/krm.2021035 |
[10] |
Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521 |
[11] |
Ludovic Rifford. Refinement of the Benoist theorem on the size of Dini subdifferentials. Communications on Pure and Applied Analysis, 2008, 7 (1) : 119-124. doi: 10.3934/cpaa.2008.7.119 |
[12] |
Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543 |
[13] |
Michael Herty, Torsten Trimborn, Giuseppe Visconti. Mean-field and kinetic descriptions of neural differential equations. Foundations of Data Science, 2022, 4 (2) : 271-298. doi: 10.3934/fods.2022007 |
[14] |
Zhenbo Wang. Worst-case performance of the successive approximation algorithm for four identical knapsacks. Journal of Industrial and Management Optimization, 2012, 8 (3) : 651-656. doi: 10.3934/jimo.2012.8.651 |
[15] |
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193 |
[16] |
Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003 |
[17] |
Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391 |
[18] |
Najla Mohammed, Peter Giesl. Grid refinement in the construction of Lyapunov functions using radial basis functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2453-2476. doi: 10.3934/dcdsb.2015.20.2453 |
[19] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
[20] |
Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1629-1650. doi: 10.3934/jimo.2021036 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]