Advanced Search
Article Contents
Article Contents

New examples of non-abelian group codes

Abstract Related Papers Cited by
  • In previous papers [4,5,6] we gave the first example of a non-abelian group code using the group ring $F_5S_4$. It is natural to ask if it is really relevant that the group ring is semisimple. What happens if the field has characteristic $2$ or $3$? We have addressed this question, with computer help, proving that there are also examples of non-abelian group codes in the non-semisimple case. The results show some interesting differences between the cases of characteristic $2$ and $3$. Furthermore, using the group $SL(2,F_3)$, we construct a non-abelian group code over $F_2$ of length $24$, dimension $6$ and minimal weight $10$. This code is optimal in the following sense: every linear code over $F_2$ with length $24$ and dimension $6$ has minimum distance less than or equal to $10$. In the case of abelian group codes over $F_2$ the above value for the minimum distance cannot be achieved, since the minimum distance of a binary abelian group code with the given length and dimension 6 is at most 8.
    Mathematics Subject Classification: Primary: 94B05, 94B60; Secondary: 20C05.


    \begin{equation} \\ \end{equation}
  • [1]

    J. J. Bernal, Á del Río and J. J. Simón, An intrinsical description of group codes, Des. Codes Crypt., 51 (2009), 289-300.doi: 10.1007/s10623-008-9261-z.


    E. Couselo, S. González, V. Markov and A. Nechaev, Loop codes, Discr. Math. Appl., 14 (2004), 163-172.doi: 10.1515/156939204872347.


    R. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, John Wiley & Sons, New York, 1962.


    C. García Pillado, S. González, V. Markov, C. Martínez and A. Nechaev, Group codes which are not abelian group codes, in Proc. 3rd Int. Castle Meeting Coding Theory Appl. (eds. J. Borges and M. Villanueva), Servei de Publicacions, 2011, 123-127.


    C. García Pillado, S. González, V. Markov, C. Martínez and A. Nechaev, When all group codes of a noncommutative group are abelian (a computational approach), Fund. Appl. Math., 17 (2012), 75-85.doi: 10.1007/s10958-012-1006-x.


    C. García Pillado, S. González, V. Markov, C. Martínez and A. Nechaev, Group codes over non-abelian groups, J. Algebra Appl., 12 (2013).doi: 10.1142/S0219498813500370.


    M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available online at http://www.codetables.de


    M. Khan, R. K. Sharma and J. B. Srivastava, The unit group of $FS_4$, in Acta Math. Hungar., 118 (2008), 105-113.doi: 10.1007/s10474-007-6169-4.


    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1974.


    D. S. Passman, The Algebraic Structure of Group Rings, John Wiley & Sons, New York, 1977.

  • 加载中

Article Metrics

HTML views() PDF downloads(240) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint