-
Previous Article
Convolutional codes with a matrix-algebra word-ambient
- AMC Home
- This Issue
-
Next Article
New examples of non-abelian group codes
An approach to the performance of SPC product codes on the erasure channel
1. | Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas (UNICAMP), R. Sérgio Buarque de Holanda, 651, Cidade Universitária, Campinas - SP, 13083-859, Brazil |
2. | Departament de Matemàtiques, Universitat d'Alacant, Ap. Correus 99, E-03080, Alacant, Spain |
References:
[1] |
M. Z. Abu-Sbeih, On the number of spanning trees of $K_n$ and $K_{m,n}$, Discrete Math., 84 (1990), 205-207.
doi: 10.1016/0012-365X(90)90377-T. |
[2] |
R. Amutha, K. Verraraghavan and S. K. Srivatsa, Recoverability study of SPC product codes under erasure decoding, Inf. Sci., 173 (2005), 169-179.
doi: 10.1016/j.ins.2004.07.011. |
[3] |
R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
doi: 10.1007/b100033. |
[4] |
P. Elias, Coding for noisy channels, IRE International Convention Record, pt. 4, 1955, 37-46. |
[5] |
P. Giblin, Graphs, Surfaces and Homology, 3rd edition, Cambridge Univ. Press, New York, 2010.
doi: 10.1017/CBO9780511779534. |
[6] |
N. Hartsfield and J. S. Werth, Spanning trees of the complete bipartite graph, in Topics in Combinatorics and Graph Theory (eds. R. Bodendieck and R. Henn), Physica-Verlag, 1990, 339-346. |
[7] |
M. A. Kousa, A novel approach for evaluating the performance of SPC product codes under erasure decoding, IEEE Trans. Commun., 50 (2002), 7-11. |
[8] |
M. A. Kousa and A. H. Mugaibel, Cell loss recovery using two-dimensional erasure correction for ATM networks, in Proc. 7th Int. Conf. Telecommun. Syst., 1999, 85-89. |
[9] |
A. Muqaibel, Enhanced upper bound for erasure recovery in SPC product codes, ETRI J., 31 (2009), 518-524. |
[10] |
D. M. Rankin and T. A. Gulliver, Single parity check product codes, IEEE Trans. Commun., 49 (2001), 1354-1362. |
[11] |
J. M. Simmons and R. G. Gallager, Design of error detection scheme for class C service in ATM, IEEE/ACM Trans. Netw., 2 (1994), 80-88. |
show all references
References:
[1] |
M. Z. Abu-Sbeih, On the number of spanning trees of $K_n$ and $K_{m,n}$, Discrete Math., 84 (1990), 205-207.
doi: 10.1016/0012-365X(90)90377-T. |
[2] |
R. Amutha, K. Verraraghavan and S. K. Srivatsa, Recoverability study of SPC product codes under erasure decoding, Inf. Sci., 173 (2005), 169-179.
doi: 10.1016/j.ins.2004.07.011. |
[3] |
R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
doi: 10.1007/b100033. |
[4] |
P. Elias, Coding for noisy channels, IRE International Convention Record, pt. 4, 1955, 37-46. |
[5] |
P. Giblin, Graphs, Surfaces and Homology, 3rd edition, Cambridge Univ. Press, New York, 2010.
doi: 10.1017/CBO9780511779534. |
[6] |
N. Hartsfield and J. S. Werth, Spanning trees of the complete bipartite graph, in Topics in Combinatorics and Graph Theory (eds. R. Bodendieck and R. Henn), Physica-Verlag, 1990, 339-346. |
[7] |
M. A. Kousa, A novel approach for evaluating the performance of SPC product codes under erasure decoding, IEEE Trans. Commun., 50 (2002), 7-11. |
[8] |
M. A. Kousa and A. H. Mugaibel, Cell loss recovery using two-dimensional erasure correction for ATM networks, in Proc. 7th Int. Conf. Telecommun. Syst., 1999, 85-89. |
[9] |
A. Muqaibel, Enhanced upper bound for erasure recovery in SPC product codes, ETRI J., 31 (2009), 518-524. |
[10] |
D. M. Rankin and T. A. Gulliver, Single parity check product codes, IEEE Trans. Commun., 49 (2001), 1354-1362. |
[11] |
J. M. Simmons and R. G. Gallager, Design of error detection scheme for class C service in ATM, IEEE/ACM Trans. Netw., 2 (1994), 80-88. |
[1] |
Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010 |
[2] |
Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179 |
[3] |
Julia Lieb, Raquel Pinto. A decoding algorithm for 2D convolutional codes over the erasure channel. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021031 |
[4] |
JiYoon Jung, Carl Mummert, Elizabeth Niese, Michael Schroeder. On erasure combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (1) : 49-65. doi: 10.3934/amc.2018003 |
[5] |
Ting Chen, Fusheng Lv, Wenchang Sun. Uniform Approximation Property of Frames with Applications to Erasure Recovery. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1093-1107. doi: 10.3934/cpaa.2022011 |
[6] |
Daniel Roggen, Martin Wirz, Gerhard Tröster, Dirk Helbing. Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. Networks and Heterogeneous Media, 2011, 6 (3) : 521-544. doi: 10.3934/nhm.2011.6.521 |
[7] |
María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021018 |
[8] |
Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks and Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429 |
[9] |
Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 |
[10] |
Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 |
[11] |
Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 |
[12] |
Maximiliano Fernandez, Javier Galeano, Cesar Hidalgo. Bipartite networks provide new insights on international trade markets. Networks and Heterogeneous Media, 2012, 7 (3) : 399-413. doi: 10.3934/nhm.2012.7.399 |
[13] |
Emmanuel Charbit, Irène Charon, Gérard Cohen, Olivier Hudry, Antoine Lobstein. Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Advances in Mathematics of Communications, 2008, 2 (4) : 403-420. doi: 10.3934/amc.2008.2.403 |
[14] |
Hirobumi Mizuno, Iwao Sato. L-functions and the Selberg trace formulas for semiregular bipartite graphs. Conference Publications, 2003, 2003 (Special) : 638-646. doi: 10.3934/proc.2003.2003.638 |
[15] |
Giuseppe Buttazzo, Filippo Santambrogio. Asymptotical compliance optimization for connected networks. Networks and Heterogeneous Media, 2007, 2 (4) : 761-777. doi: 10.3934/nhm.2007.2.761 |
[16] |
Andrea Seidl, Stefan Wrzaczek. Opening the source code: The threat of forking. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022010 |
[17] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[18] |
Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17 |
[19] |
J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413 |
[20] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]