-
Previous Article
Further results on fibre products of Kummer covers and curves with many points over finite fields
- AMC Home
- This Issue
-
Next Article
On applications of orbit codes to storage
Complementary dual codes for counter-measures to side-channel attacks
1. | LAGA, UMR 7539, CNRS, University of Paris VIII and University of Paris XIII, Department of Mathematics, 2 rue de la liberte, 93 526 Saint-Denis Cedex, France |
2. | TELECOM-ParisTech, Crypto Group | Paris-Saclay University | CNRS LTCI, 37/39 rue Dareau, 75 634 Paris Cedex 13, France |
References:
[1] |
S. Barnett, Matrices: Methods and Applications, Clarendon Press, Oxford, 1990. |
[2] |
K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes, Des. Codes Crypt., 23 (2001), 11-22.
doi: 10.1023/A:1011203416769. |
[3] |
S. Bhasin, J.-L. Danger, S. Guilley and Z. Najm, A low-entropy first-degree secure provable masking scheme for resource-constrained devices, in Workshop Embedded Syst. Sec., New York, 2013.
doi: 10.1145/2527317.2527324. |
[4] |
S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm and X. T. Ngo, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses, in 2015 IEEE Int. Symp. Hardware-Oriented Sec. Trust, McLean, 2015, 82-87.
doi: 10.1109/HST.2015.7140242. |
[5] |
S. Bhasin, J.-L. Danger, S. Guilley, T. Ngo and L. Sauvage, Hardware trojan horses in cryptographic IP cores, in FDTC, Santa Barbara, 2013, 15-29. |
[6] |
S. Bhasin, J.-L. Danger, X. T. Ngo, S. Guilley and Z. Najm, Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses, in Proc. 9th Workshop Embedded Syst. Sec., New York, 2014.
doi: 10.1145/2668322.2668329. |
[7] |
A. Bojilov, A. J. van Zanten and S. M. Dodunekov, Minimal distances in generalized residue codes, in Proc. 12th Int. Workshop Algebr. Combin. Coding Theory, Novosibirsk, 2010. |
[8] |
J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks, in WISTP, Springer, Heraklion, 2014, 40-56. |
[9] |
C. Carlet, Boolean functions for cryptography and error correcting codes, in Chapter of the Monography Boolean Models and Methods (eds. Y. Crama and P. Hammer), Cambridge University Press, 2010, 257-397. |
[10] |
C. Carlet, A. Daif, J.-L. Danger, S. Guilley, Z. Najm, X. T. Ngo and C. Tavernier, Optimized linear complementary codes implementation for hardware trojan prevention, in 22nd Europ. Conf. Circuit Theory Des., Trondheim, 2015. |
[11] |
C. Carlet, P. Gaborit, J.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012), 6000-6011.
doi: 10.1109/TIT.2012.2200651. |
[12] |
B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2l^mp^n$,, preprint, ().
|
[13] |
J. Etesami, F. Hu and W. Henkel, LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding, in GLOBECOM, IEEE, 2011, 1-4. |
[14] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at , ().
|
[15] |
V. Grosso, F.-X. Standaert and E. Prouff, Low entropy masking schemes, revisited, in CARDIS (eds. A. Francillon and P. Rohatgi), Springer, 2013, 33-43. |
[16] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511807077. |
[17] |
W. B. V. Kandasamy, F. Smarandache, R. Sujatha and R. S. R. Durai, Erasure Techniques in MRD Codes, Infinite Study, 2012. |
[18] |
S. Ling and C. Xing, Polyadic codes revisited, IEEE Trans. Inf. Theory, 50 (2004), 200-207.
doi: 10.1109/TIT.2003.821986. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier, Amsterdam, 1977. |
[20] |
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U. |
[21] |
G. L. Mullen and D. Panario, Handbook of Finite Fields, Chapman and Hall/CRC, 2013.
doi: 10.1201/b15006. |
[22] |
E. Prouff, M. Rivain and R. Bevan, Statistical Analysis of Second Order Differential Power Analysis, IEEE Trans. Computers, 58 (2009), 799-811.
doi: 10.1109/TC.2009.15. |
[23] |
N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math., 285 (2004), 345-347.
doi: 10.1016/j.disc.2004.05.005. |
[24] |
A. Sharma, G. K. Bakshi and M. Raka, Polyadic codes of prime power length, Finite Fields Appl., 13 (2007), 1071-1085.
doi: 10.1016/j.ffa.2006.12.006. |
[25] |
J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes, IEEE Trans. Inf. Theory, 24 (1978), 730-737.
doi: 10.1109/TIT.1978.1055965. |
[26] |
H. N. Ward, Quadratic residue codes and divisibility, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), Elsevier Sci., 1998, 827-870. |
[27] |
X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.
doi: 10.1016/0012-365X(94)90283-6. |
show all references
References:
[1] |
S. Barnett, Matrices: Methods and Applications, Clarendon Press, Oxford, 1990. |
[2] |
K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes, Des. Codes Crypt., 23 (2001), 11-22.
doi: 10.1023/A:1011203416769. |
[3] |
S. Bhasin, J.-L. Danger, S. Guilley and Z. Najm, A low-entropy first-degree secure provable masking scheme for resource-constrained devices, in Workshop Embedded Syst. Sec., New York, 2013.
doi: 10.1145/2527317.2527324. |
[4] |
S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm and X. T. Ngo, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses, in 2015 IEEE Int. Symp. Hardware-Oriented Sec. Trust, McLean, 2015, 82-87.
doi: 10.1109/HST.2015.7140242. |
[5] |
S. Bhasin, J.-L. Danger, S. Guilley, T. Ngo and L. Sauvage, Hardware trojan horses in cryptographic IP cores, in FDTC, Santa Barbara, 2013, 15-29. |
[6] |
S. Bhasin, J.-L. Danger, X. T. Ngo, S. Guilley and Z. Najm, Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses, in Proc. 9th Workshop Embedded Syst. Sec., New York, 2014.
doi: 10.1145/2668322.2668329. |
[7] |
A. Bojilov, A. J. van Zanten and S. M. Dodunekov, Minimal distances in generalized residue codes, in Proc. 12th Int. Workshop Algebr. Combin. Coding Theory, Novosibirsk, 2010. |
[8] |
J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks, in WISTP, Springer, Heraklion, 2014, 40-56. |
[9] |
C. Carlet, Boolean functions for cryptography and error correcting codes, in Chapter of the Monography Boolean Models and Methods (eds. Y. Crama and P. Hammer), Cambridge University Press, 2010, 257-397. |
[10] |
C. Carlet, A. Daif, J.-L. Danger, S. Guilley, Z. Najm, X. T. Ngo and C. Tavernier, Optimized linear complementary codes implementation for hardware trojan prevention, in 22nd Europ. Conf. Circuit Theory Des., Trondheim, 2015. |
[11] |
C. Carlet, P. Gaborit, J.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012), 6000-6011.
doi: 10.1109/TIT.2012.2200651. |
[12] |
B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2l^mp^n$,, preprint, ().
|
[13] |
J. Etesami, F. Hu and W. Henkel, LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding, in GLOBECOM, IEEE, 2011, 1-4. |
[14] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at , ().
|
[15] |
V. Grosso, F.-X. Standaert and E. Prouff, Low entropy masking schemes, revisited, in CARDIS (eds. A. Francillon and P. Rohatgi), Springer, 2013, 33-43. |
[16] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511807077. |
[17] |
W. B. V. Kandasamy, F. Smarandache, R. Sujatha and R. S. R. Durai, Erasure Techniques in MRD Codes, Infinite Study, 2012. |
[18] |
S. Ling and C. Xing, Polyadic codes revisited, IEEE Trans. Inf. Theory, 50 (2004), 200-207.
doi: 10.1109/TIT.2003.821986. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier, Amsterdam, 1977. |
[20] |
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U. |
[21] |
G. L. Mullen and D. Panario, Handbook of Finite Fields, Chapman and Hall/CRC, 2013.
doi: 10.1201/b15006. |
[22] |
E. Prouff, M. Rivain and R. Bevan, Statistical Analysis of Second Order Differential Power Analysis, IEEE Trans. Computers, 58 (2009), 799-811.
doi: 10.1109/TC.2009.15. |
[23] |
N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math., 285 (2004), 345-347.
doi: 10.1016/j.disc.2004.05.005. |
[24] |
A. Sharma, G. K. Bakshi and M. Raka, Polyadic codes of prime power length, Finite Fields Appl., 13 (2007), 1071-1085.
doi: 10.1016/j.ffa.2006.12.006. |
[25] |
J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes, IEEE Trans. Inf. Theory, 24 (1978), 730-737.
doi: 10.1109/TIT.1978.1055965. |
[26] |
H. N. Ward, Quadratic residue codes and divisibility, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), Elsevier Sci., 1998, 827-870. |
[27] |
X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.
doi: 10.1016/0012-365X(94)90283-6. |
[1] |
Xinmei Huang, Qin Yue, Yansheng Wu, Xiaoping Shi. Ternary Primitive LCD BCH codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021014 |
[2] |
Haode Yan, Hao Liu, Chengju Li, Shudi Yang. Parameters of LCD BCH codes with two lengths. Advances in Mathematics of Communications, 2018, 12 (3) : 579-594. doi: 10.3934/amc.2018034 |
[3] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[4] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[5] |
José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018 |
[6] |
Angelot Behajaina. On BCH split metacyclic codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021045 |
[7] |
Ranya Djihad Boulanouar, Aicha Batoul, Delphine Boucher. An overview on skew constacyclic codes and their subclass of LCD codes. Advances in Mathematics of Communications, 2021, 15 (4) : 611-632. doi: 10.3934/amc.2020085 |
[8] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[9] |
Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021070 |
[10] |
Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 |
[11] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[12] |
Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177 |
[13] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[14] |
José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317 |
[15] |
Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2020, 14 (3) : 437-453. doi: 10.3934/amc.2020047 |
[16] |
Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297 |
[17] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69 |
[18] |
Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035 |
[19] |
Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41 |
[20] |
Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]