\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On $\omega$-cyclic-conjugated-perfect quaternary GDJ sequences

Abstract Related Papers Cited by
  • A sequence is called perfect if its autocorrelation function is a delta function. In this paper, we give a new definition of autocorrelation function: $\omega$-cyclic-conjugated autocorrelation. As a result, we present several classes of $\omega$-cyclic-conjugated-perfect quaternary Golay sequences, where $\omega=\pm 1$. We also considered such perfect property for $4^q$-QAM Golay sequences, $q\ge 2$ being an integer.
    Mathematics Subject Classification: Primary: 94A05, 60G35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52 (2006), 3817-3826.doi: 10.1109/TIT.2006.878171.

    [2]

    S. Boztaş and P. Udaya, Nonbinary sequences with perfect and nearly perfect autocorrelation, in ISIT 2010, (2010), 1300-1304.

    [3]

    C. Y. Chang, Y. Li and J. Hirata, New 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (2009), 2479-2485.doi: 10.1109/TIT.2010.2043871.

    [4]

    C. V. Chong, R. Venkataramani and V. Tarokh, A new construction of 16-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 49 (2003), 2953-2959.doi: 10.1109/TIT.2003.818418.

    [5]

    D. C. Chu, Polyphase codes with good periodic correlation properties, IEEE Trans. Inf. Theory, 18 (1972), 531-532.

    [6]

    J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.doi: 10.1109/18.796380.

    [7]

    P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, John Wiley & Sons, London, 1996.

    [8]

    R. Frank, S. Zadoff and R. Heimiller, Phase shift pulse codes with good periodic correlation properties, IRE Trans. Inf. Theory, 8 (1962), 381-382.

    [9]

    M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444.

    [10]

    M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87.

    [11]

    S. W. Golomb and G. Gong, Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications, Cambridge Univeristy Press, Cambridge, 2005.doi: 10.1017/CBO9780511546907.

    [12]

    G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay sequences, in ISIT 2012, (2012), 1024-1028.

    [13]

    G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay sequences and their applications, IEEE Trans. Commun., 61 (2013), 3967-3978.

    [14]

    T. Hoholdt and J. Justesen, Ternary sequences with perfect periodic auto-correlation, IEEE Trans. Inf. Theory, IT-29 (1983), 597-600.doi: 10.1109/TIT.1983.1056707.

    [15]

    V. P. Ipatov, Periodic Discrete Signals with Optimal Correlation Properties, Radio i svyaz, 1992.

    [16]

    E. I. Krengel, Almost-perfect and odd-perfect ternary sequences, in SETA 2004, Springer, 2004, 197-207.

    [17]

    C. E. Lee, Perfect $q$-ary sequences from multiplicative characters over $GF(p)$, Electr. Letters, 28 (1992), 833-834.

    [18]

    H. Lee and S. W. Golomb, A new construction of 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 52 (2006), 1663-1670.doi: 10.1109/TIT.2006.871616.

    [19]

    Y. Li, Commnents on "A new construction of 16-QAM Golay complementary sequences'' and extension for 64-QAM Golay sequences, IEEE Trans. Inf. Theory, 54 (2008), 3246-3251.doi: 10.1109/TIT.2008.924735.

    [20]

    Y. Li, A construction of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (2010), 5765-5771.doi: 10.1109/TIT.2010.2070151.

    [21]

    Y. Li and W. B. Chu, More Golay sequences, IEEE Trans. Inf. Theory, 51 (2005), 1141-1145.doi: 10.1109/TIT.2004.842775.

    [22]

    Z. L. Liu, Y. Li and Y. L. Guan, New constructions of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 59 (2013), 7684-7692.doi: 10.1109/TIT.2013.2278178.

    [23]

    H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electr. Syst., 31 (1995), 495-498.

    [24]

    A. Milewski, Periodic sequences with optimal properties for channel estimation and fast start-up equalization, IBM J. Res. Devel., 27 (1983), 425-431.

    [25]

    M. J. Mossinghoff, Wieferich pairs and Barker sequences, Des. Codes Crypt., 53 (2009), 1-15.doi: 10.1007/s10623-009-9301-3.

    [26]

    K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120.doi: 10.1109/18.817512.

    [27]

    A. Pott, Difference triangles and negaperiodic autocorrelation functions, Discrete Math., 308 (2008), 2854-2861.doi: 10.1016/j.disc.2006.06.048.

    [28]

    M. B. Pursley, A Introduction to Digital Communications, Pearson Prentice Hall, 2005.

    [29]

    A. Rathinakumar and A. K. Chaturvedi, Complete mutually orthogonal Golay complementary sets from Reed-Muller codes, IEEE. Trans. Inf. Theory, 54 (2008), 1339-1346.doi: 10.1109/TIT.2007.915980.

    [30]

    D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619.

    [31]

    H. D. Schotten and H. D. Lüke, New perfect and $\omega$-cyclic-perfect Sequences, in Proc. Int. Symp. Inf. Theory Appl., 1996, 82-85.

    [32]

    J. R. Seberry, B. J. Wysocki and T. A. Wysocki, On a use of Golay sequences for asynchronous DS CDMA applications, in Advanced Signal Processing for Communication Systems, Springer, 2002, 183-196.

    [33]

    X. H. Tang, P. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56 (2010), 4038-4045.doi: 10.1109/TIT.2010.2050796.

    [34]

    Y. Yang, F. Huo and G. Gong, Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, in ISIT 2012, 2012, 1024-1028.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return