-
Previous Article
Arbitrarily varying multiple access channels with conferencing encoders: List decoding and finite coordination resources
- AMC Home
- This Issue
-
Next Article
Decoding of differential AG codes
On $\omega$-cyclic-conjugated-perfect quaternary GDJ sequences
1. | Department of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China |
2. | Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 |
3. | Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 |
References:
[1] |
R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52 (2006), 3817-3826.
doi: 10.1109/TIT.2006.878171. |
[2] |
S. Boztaş and P. Udaya, Nonbinary sequences with perfect and nearly perfect autocorrelation, in ISIT 2010, (2010), 1300-1304. |
[3] |
C. Y. Chang, Y. Li and J. Hirata, New 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (2009), 2479-2485.
doi: 10.1109/TIT.2010.2043871. |
[4] |
C. V. Chong, R. Venkataramani and V. Tarokh, A new construction of 16-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 49 (2003), 2953-2959.
doi: 10.1109/TIT.2003.818418. |
[5] |
D. C. Chu, Polyphase codes with good periodic correlation properties, IEEE Trans. Inf. Theory, 18 (1972), 531-532. |
[6] |
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[7] |
P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, John Wiley & Sons, London, 1996. |
[8] |
R. Frank, S. Zadoff and R. Heimiller, Phase shift pulse codes with good periodic correlation properties, IRE Trans. Inf. Theory, 8 (1962), 381-382. |
[9] |
M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444. |
[10] |
M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87. |
[11] |
S. W. Golomb and G. Gong, Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications, Cambridge Univeristy Press, Cambridge, 2005.
doi: 10.1017/CBO9780511546907. |
[12] |
G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay sequences, in ISIT 2012, (2012), 1024-1028. |
[13] |
G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay sequences and their applications, IEEE Trans. Commun., 61 (2013), 3967-3978. |
[14] |
T. Hoholdt and J. Justesen, Ternary sequences with perfect periodic auto-correlation, IEEE Trans. Inf. Theory, IT-29 (1983), 597-600.
doi: 10.1109/TIT.1983.1056707. |
[15] |
V. P. Ipatov, Periodic Discrete Signals with Optimal Correlation Properties, Radio i svyaz, 1992. |
[16] |
E. I. Krengel, Almost-perfect and odd-perfect ternary sequences, in SETA 2004, Springer, 2004, 197-207. |
[17] |
C. E. Lee, Perfect $q$-ary sequences from multiplicative characters over $GF(p)$, Electr. Letters, 28 (1992), 833-834. |
[18] |
H. Lee and S. W. Golomb, A new construction of 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 52 (2006), 1663-1670.
doi: 10.1109/TIT.2006.871616. |
[19] |
Y. Li, Commnents on "A new construction of 16-QAM Golay complementary sequences'' and extension for 64-QAM Golay sequences, IEEE Trans. Inf. Theory, 54 (2008), 3246-3251.
doi: 10.1109/TIT.2008.924735. |
[20] |
Y. Li, A construction of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (2010), 5765-5771.
doi: 10.1109/TIT.2010.2070151. |
[21] |
Y. Li and W. B. Chu, More Golay sequences, IEEE Trans. Inf. Theory, 51 (2005), 1141-1145.
doi: 10.1109/TIT.2004.842775. |
[22] |
Z. L. Liu, Y. Li and Y. L. Guan, New constructions of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 59 (2013), 7684-7692.
doi: 10.1109/TIT.2013.2278178. |
[23] |
H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electr. Syst., 31 (1995), 495-498. |
[24] |
A. Milewski, Periodic sequences with optimal properties for channel estimation and fast start-up equalization, IBM J. Res. Devel., 27 (1983), 425-431. |
[25] |
M. J. Mossinghoff, Wieferich pairs and Barker sequences, Des. Codes Crypt., 53 (2009), 1-15.
doi: 10.1007/s10623-009-9301-3. |
[26] |
K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512. |
[27] |
A. Pott, Difference triangles and negaperiodic autocorrelation functions, Discrete Math., 308 (2008), 2854-2861.
doi: 10.1016/j.disc.2006.06.048. |
[28] |
M. B. Pursley, A Introduction to Digital Communications, Pearson Prentice Hall, 2005. |
[29] |
A. Rathinakumar and A. K. Chaturvedi, Complete mutually orthogonal Golay complementary sets from Reed-Muller codes, IEEE. Trans. Inf. Theory, 54 (2008), 1339-1346.
doi: 10.1109/TIT.2007.915980. |
[30] |
D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619. |
[31] |
H. D. Schotten and H. D. Lüke, New perfect and $\omega$-cyclic-perfect Sequences, in Proc. Int. Symp. Inf. Theory Appl., 1996, 82-85. |
[32] |
J. R. Seberry, B. J. Wysocki and T. A. Wysocki, On a use of Golay sequences for asynchronous DS CDMA applications, in Advanced Signal Processing for Communication Systems, Springer, 2002, 183-196. |
[33] |
X. H. Tang, P. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56 (2010), 4038-4045.
doi: 10.1109/TIT.2010.2050796. |
[34] |
Y. Yang, F. Huo and G. Gong, Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, in ISIT 2012, 2012, 1024-1028. |
show all references
References:
[1] |
R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52 (2006), 3817-3826.
doi: 10.1109/TIT.2006.878171. |
[2] |
S. Boztaş and P. Udaya, Nonbinary sequences with perfect and nearly perfect autocorrelation, in ISIT 2010, (2010), 1300-1304. |
[3] |
C. Y. Chang, Y. Li and J. Hirata, New 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (2009), 2479-2485.
doi: 10.1109/TIT.2010.2043871. |
[4] |
C. V. Chong, R. Venkataramani and V. Tarokh, A new construction of 16-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 49 (2003), 2953-2959.
doi: 10.1109/TIT.2003.818418. |
[5] |
D. C. Chu, Polyphase codes with good periodic correlation properties, IEEE Trans. Inf. Theory, 18 (1972), 531-532. |
[6] |
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[7] |
P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, John Wiley & Sons, London, 1996. |
[8] |
R. Frank, S. Zadoff and R. Heimiller, Phase shift pulse codes with good periodic correlation properties, IRE Trans. Inf. Theory, 8 (1962), 381-382. |
[9] |
M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444. |
[10] |
M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87. |
[11] |
S. W. Golomb and G. Gong, Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications, Cambridge Univeristy Press, Cambridge, 2005.
doi: 10.1017/CBO9780511546907. |
[12] |
G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay sequences, in ISIT 2012, (2012), 1024-1028. |
[13] |
G. Gong, F. Huo and Y. Yang, Large zero autocorrelation zone of Golay sequences and their applications, IEEE Trans. Commun., 61 (2013), 3967-3978. |
[14] |
T. Hoholdt and J. Justesen, Ternary sequences with perfect periodic auto-correlation, IEEE Trans. Inf. Theory, IT-29 (1983), 597-600.
doi: 10.1109/TIT.1983.1056707. |
[15] |
V. P. Ipatov, Periodic Discrete Signals with Optimal Correlation Properties, Radio i svyaz, 1992. |
[16] |
E. I. Krengel, Almost-perfect and odd-perfect ternary sequences, in SETA 2004, Springer, 2004, 197-207. |
[17] |
C. E. Lee, Perfect $q$-ary sequences from multiplicative characters over $GF(p)$, Electr. Letters, 28 (1992), 833-834. |
[18] |
H. Lee and S. W. Golomb, A new construction of 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 52 (2006), 1663-1670.
doi: 10.1109/TIT.2006.871616. |
[19] |
Y. Li, Commnents on "A new construction of 16-QAM Golay complementary sequences'' and extension for 64-QAM Golay sequences, IEEE Trans. Inf. Theory, 54 (2008), 3246-3251.
doi: 10.1109/TIT.2008.924735. |
[20] |
Y. Li, A construction of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (2010), 5765-5771.
doi: 10.1109/TIT.2010.2070151. |
[21] |
Y. Li and W. B. Chu, More Golay sequences, IEEE Trans. Inf. Theory, 51 (2005), 1141-1145.
doi: 10.1109/TIT.2004.842775. |
[22] |
Z. L. Liu, Y. Li and Y. L. Guan, New constructions of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 59 (2013), 7684-7692.
doi: 10.1109/TIT.2013.2278178. |
[23] |
H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electr. Syst., 31 (1995), 495-498. |
[24] |
A. Milewski, Periodic sequences with optimal properties for channel estimation and fast start-up equalization, IBM J. Res. Devel., 27 (1983), 425-431. |
[25] |
M. J. Mossinghoff, Wieferich pairs and Barker sequences, Des. Codes Crypt., 53 (2009), 1-15.
doi: 10.1007/s10623-009-9301-3. |
[26] |
K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512. |
[27] |
A. Pott, Difference triangles and negaperiodic autocorrelation functions, Discrete Math., 308 (2008), 2854-2861.
doi: 10.1016/j.disc.2006.06.048. |
[28] |
M. B. Pursley, A Introduction to Digital Communications, Pearson Prentice Hall, 2005. |
[29] |
A. Rathinakumar and A. K. Chaturvedi, Complete mutually orthogonal Golay complementary sets from Reed-Muller codes, IEEE. Trans. Inf. Theory, 54 (2008), 1339-1346.
doi: 10.1109/TIT.2007.915980. |
[30] |
D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619. |
[31] |
H. D. Schotten and H. D. Lüke, New perfect and $\omega$-cyclic-perfect Sequences, in Proc. Int. Symp. Inf. Theory Appl., 1996, 82-85. |
[32] |
J. R. Seberry, B. J. Wysocki and T. A. Wysocki, On a use of Golay sequences for asynchronous DS CDMA applications, in Advanced Signal Processing for Communication Systems, Springer, 2002, 183-196. |
[33] |
X. H. Tang, P. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56 (2010), 4038-4045.
doi: 10.1109/TIT.2010.2050796. |
[34] |
Y. Yang, F. Huo and G. Gong, Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, in ISIT 2012, 2012, 1024-1028. |
[1] |
Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379 |
[2] |
Pinhui Ke, Yueqin Jiang, Zhixiong Chen. On the linear complexities of two classes of quaternary sequences of even length with optimal autocorrelation. Advances in Mathematics of Communications, 2018, 12 (3) : 525-539. doi: 10.3934/amc.2018031 |
[3] |
Pinhui Ke, Panpan Qiao, Yang Yang. On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length $ 2p$. Advances in Mathematics of Communications, 2022, 16 (2) : 285-302. doi: 10.3934/amc.2020112 |
[4] |
Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 |
[5] |
Oǧuz Yayla. Nearly perfect sequences with arbitrary out-of-phase autocorrelation. Advances in Mathematics of Communications, 2016, 10 (2) : 401-411. doi: 10.3934/amc.2016014 |
[6] |
Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021019 |
[7] |
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199 |
[8] |
Tongjiang Yan, Yanyan Liu, Yuhua Sun. Cyclic codes from two-prime generalized cyclotomic sequences of order 6. Advances in Mathematics of Communications, 2016, 10 (4) : 707-723. doi: 10.3934/amc.2016036 |
[9] |
José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 |
[10] |
Büşra Özden, Oǧuz Yayla. Partial direct product difference sets and almost quaternary sequences. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021010 |
[11] |
Zilong Wang, Guang Gong, Rongquan Feng. A generalized construction of OFDM $M$-QAM sequences with low peak-to-average power ratio. Advances in Mathematics of Communications, 2009, 3 (4) : 421-428. doi: 10.3934/amc.2009.3.421 |
[12] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure and Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[13] |
Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen. Recursive sequences and girard-waring identities with applications in sequence transformation. Electronic Research Archive, 2020, 28 (2) : 1049-1062. doi: 10.3934/era.2020057 |
[14] |
Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2021, 15 (4) : 647-662. doi: 10.3934/amc.2020087 |
[15] |
Bingsheng Shen, Yang Yang, Ruibin Ren. Three constructions of Golay complementary array sets. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022019 |
[16] |
B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037 |
[17] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[18] |
Guy Métivier, Kevin Zumbrun. Large-amplitude modulation of periodic traveling waves. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022070 |
[19] |
Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671 |
[20] |
Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]