• Previous Article
    Codes over local rings of order 16 and binary codes
  • AMC Home
  • This Issue
  • Next Article
    Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes
May  2016, 10(2): 367-377. doi: 10.3934/amc.2016011

The geometric structure of relative one-weight codes

1. 

Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, China

2. 

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, Hubei 430062, China

Received  July 2014 Revised  August 2015 Published  April 2016

The geometric structure of any relative one-weight code is determined, and by using this geometric structure, the support weight distribution of subcodes of any relative one-weight code is presented. An application of relative one-weight codes to the wire-tap channel of type II with multiple users is given, and certain kinds of relative one-weight codes all of whose nonzero codewords are minimal are determined.
Citation: Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011
References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017. doi: 10.1109/18.705584.

[2]

W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inf. Theory, 42 (1996), 2265-2272. doi: 10.1109/18.556621.

[3]

Z. H. Liu and W. D. Chen, Notes on the value function, Des. Codes Crypt., 54 (2010), 11-19. doi: 10.1007/s10623-009-9305-z.

[4]

Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes, Des. Codes Crypt., 61 (2011), 119-129. doi: 10.1007/s10623-010-9442-4.

[5]

Z. H. Liu and X. W. Wu, On relative constant-weight codes, Des. Codes Crypt., 75 (2015), 127-144. doi: 10.1007/s10623-013-9896-2.

[6]

Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229. doi: 10.1109/TIT.2004.842763.

[7]

F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977.

[8]

V. K. Wei, Generalized Hamming weight for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418. doi: 10.1109/18.133259.

[9]

J. A. Wood, Relative one-weight linear codes, Des. Codes Crypt., 72 (2014), 331-344. doi: 10.1007/s10623-012-9769-0.

[10]

J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212. doi: 10.1109/TIT.2005.860412.

show all references

References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017. doi: 10.1109/18.705584.

[2]

W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inf. Theory, 42 (1996), 2265-2272. doi: 10.1109/18.556621.

[3]

Z. H. Liu and W. D. Chen, Notes on the value function, Des. Codes Crypt., 54 (2010), 11-19. doi: 10.1007/s10623-009-9305-z.

[4]

Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes, Des. Codes Crypt., 61 (2011), 119-129. doi: 10.1007/s10623-010-9442-4.

[5]

Z. H. Liu and X. W. Wu, On relative constant-weight codes, Des. Codes Crypt., 75 (2015), 127-144. doi: 10.1007/s10623-013-9896-2.

[6]

Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229. doi: 10.1109/TIT.2004.842763.

[7]

F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977.

[8]

V. K. Wei, Generalized Hamming weight for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418. doi: 10.1109/18.133259.

[9]

J. A. Wood, Relative one-weight linear codes, Des. Codes Crypt., 72 (2014), 331-344. doi: 10.1007/s10623-012-9769-0.

[10]

J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212. doi: 10.1109/TIT.2005.860412.

[1]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[2]

Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021042

[3]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[4]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[5]

Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059

[6]

Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021

[7]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[8]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[9]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[10]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[11]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[12]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[13]

Claude Carlet. Expressing the minimum distance, weight distribution and covering radius of codes by means of the algebraic and numerical normal forms of their indicators. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022047

[14]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[15]

Seheon Ham, Hyerim Ko, Sanghyuk Lee. Circular average relative to fractal measures. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022100

[16]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[17]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[18]

Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021046

[19]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems and Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[20]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (202)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]