\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code

Abstract Related Papers Cited by
  • Ternary constant weight codes of length $n=2^m$, weight $n-1$, cardinality $2^n$ and distance $5$ are known to exist for every $m$ for which there exists an APN permutation of order $2^m$, that is, at least for all odd $m \geq 3$ and for $m=6$. We show the non-existence of such codes for $m=4$ and prove that any codes with the parameters above are diameter perfect.
    Mathematics Subject Classification: Primary: 94B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Ahlswede, H. K. Aydinian and L. H. Khachatrian, On perfect codes and related concepts, Des. Codes Crypt., 22 (2001), 221-237.doi: 10.1023/A:1008394205999.

    [2]

    R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, Eur. J. Combin., 18 (1997), 125-136.doi: 10.1006/eujc.1995.0092.

    [3]

    R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces-optimal anticodes, Adv. Appl. Math., 20 (1998), 429-449.doi: 10.1006/aama.1998.0588.

    [4]

    K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe, An APN permutation in dimension six, in Finite Fields: Theory and Applications, Amer. Math. Soc., Providence, 2010, 33-42.doi: 10.1090/conm/518/10194.

    [5]

    M. Deza, Une propriété extrémale des plans projectifs finis dans une classe de codes équidistants, Discrete Math., 6 (1973), 343-352.

    [6]

    T. Junttila and P. Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in Proc. 9th Workshop Algor. Engin. Exper., Soc. Industr. Appl. Math., Philadelphia, 2007, 135-149.

    [7]

    P. Kaski and O. Pottonen, libexact user's guide, version 1.0, HIIT Technical Reports 2008-1, Helsinki, 2008.

    [8]

    D. S. Krotov, On diameter perfect constant-weight ternary codes, Discrete Math., 308 (2008), 3104-3114.doi: 10.1016/j.disc.2007.08.037.

    [9]

    P. R. J. Östergård and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I-classification, IEEE Trans. Inf. Theory, 55 (2009), 4657-4660.doi: 10.1109/TIT.2009.2027525.

    [10]

    P. R. J. Östergård and M. Svanström, Ternary constant weight codes, Electr. J. Combin., 9(1) (2002), #R41.

    [11]

    M. Svanström, A class of perfect ternary constant-weight codes, Des. Codes Crypt., 18 (1999), 223-229.doi: 10.1023/A:1008361925021.

    [12]

    M. Svanström, Ternary Codes with Weight Constraints, Ph.D thesis, Linköping Univ., 1999.

    [13]

    H. Tanaka, Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, J. Combin. Theory Ser. A, 113 (2006), 903-910.doi: 10.1016/j.jcta.2005.08.006.

    [14]

    J. van Lint and L. Tolhuizen, On perfect ternary constant weight codes, Des. Codes Crypt., 18 (1999), 231-234.doi: 10.1023/A:1008314009092.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(177) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return