- Previous Article
- AMC Home
- This Issue
-
Next Article
A class of $p$-ary cyclic codes and their weight enumerators
Cyclic and BCH codes whose minimum distance equals their maximum BCH bound
1. | Departamento de Matemáticas, Universidad de Murcia, Spain, Spain |
2. | Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana seccional Cali, Colombia |
References:
[1] |
P. Camion, Abelian codes, MRC Tech. Sum. Rep. 1059, Univ. Wisconsin Madison, 1970. |
[2] |
P. Charpin, Open problems on cyclic codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1998, 963-1063. |
[3] |
R. T. Chien and D. M. Choy, Algebraic generalization of BCH-Goppa-Helgert codes, IEEE Trans. Inf. Theory, 21 (1975), 70-79. |
[4] |
, GAP - Groups, Algorithms, Programming - a system for computational discrete algebra,, , ().
|
[5] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.
doi: 10.1017/CBO9780511807077. |
[6] |
F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977. |
[7] |
J. H. Van Lint and R. M. Wilson, On the minimum distance of cyclic codes, IEEE Trans. Inf. Theory, 32 (1986), 23-40.
doi: 10.1109/TIT.1986.1057134. |
show all references
References:
[1] |
P. Camion, Abelian codes, MRC Tech. Sum. Rep. 1059, Univ. Wisconsin Madison, 1970. |
[2] |
P. Charpin, Open problems on cyclic codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1998, 963-1063. |
[3] |
R. T. Chien and D. M. Choy, Algebraic generalization of BCH-Goppa-Helgert codes, IEEE Trans. Inf. Theory, 21 (1975), 70-79. |
[4] |
, GAP - Groups, Algorithms, Programming - a system for computational discrete algebra,, , ().
|
[5] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.
doi: 10.1017/CBO9780511807077. |
[6] |
F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977. |
[7] |
J. H. Van Lint and R. M. Wilson, On the minimum distance of cyclic codes, IEEE Trans. Inf. Theory, 32 (1986), 23-40.
doi: 10.1109/TIT.1986.1057134. |
[1] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[2] |
Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175 |
[3] |
Angelot Behajaina. On BCH split metacyclic codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021045 |
[4] |
Jinmei Fan, Yanhai Zhang. Optimal quinary negacyclic codes with minimum distance four. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021043 |
[5] |
Xinmei Huang, Qin Yue, Yansheng Wu, Xiaoping Shi. Ternary Primitive LCD BCH codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021014 |
[6] |
Haode Yan, Hao Liu, Chengju Li, Shudi Yang. Parameters of LCD BCH codes with two lengths. Advances in Mathematics of Communications, 2018, 12 (3) : 579-594. doi: 10.3934/amc.2018034 |
[7] |
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 |
[8] |
Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 |
[9] |
John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019 |
[10] |
Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273 |
[11] |
Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297 |
[12] |
Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417 |
[13] |
Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233 |
[14] |
Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005 |
[15] |
Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028 |
[16] |
Dean Crnković, Sanja Rukavina, Andrea Švob. Self-orthogonal codes from equitable partitions of distance-regular graphs. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022014 |
[17] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[18] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[19] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[20] |
Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]