August  2016, 10(3): 511-524. doi: 10.3934/amc.2016022

Construction of 3-designs using $(1,\sigma)$-resolution

1. 

Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany

Received  May 2015 Revised  November 2015 Published  August 2016

The paper deals with recursive constructions for simple 3-designs based on other 3-designs having $(1, \sigma)$-resolution. The concept of $(1, \sigma)$-resolution may be viewed as a generalization of the parallelism for designs. We show the constructions and their applications to produce many previously unknown infinite families of simple 3-designs. We also include a discussion of $(1,\sigma)$-resolvability of the constructed designs.
Citation: Tran van Trung. Construction of 3-designs using $(1,\sigma)$-resolution. Advances in Mathematics of Communications, 2016, 10 (3) : 511-524. doi: 10.3934/amc.2016022
References:
[1]

R. D. Baker, Partitioning the planes of $AG_{2m}(2)$ into 2-designs, Discr. Math., 15 (1976) 205-211.  Google Scholar

[2]

Z. Baranyai, On the factorization of the complete uniform hypergraph, in Proc. Erdös-Colloquium Keszthely, North-Holland, Amsterdam, 1973, 91-108.  Google Scholar

[3]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge Univ. Press, Cambridge, 1986.  Google Scholar

[4]

J. Bierbrauer, Some friends of Alltop's designs $4-(2^f+1,5,5)$, J. Combin. Math. Combin. Comput., 36 (2001), 43-53.  Google Scholar

[5]

J. Bierbrauer and T. van Trung, Shadow and shade of designs $4-(2^f+1,6,10)$, unpublished manuscript, 1994. Google Scholar

[6]

R. C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhyā, 6 (1942), 105-110.  Google Scholar

[7]

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, 1996. doi: 10.1201/9781420049954.  Google Scholar

[8]

L. H. M. E. Driessen, $t$-designs, $t\geq 3$, Technical Report, Dep. Math., Technische Hogeschool Eindhoven, The Netherlands, 1978. Google Scholar

[9]

M. Jimbo, Y. Kunihara, R. Laue and M. Sawa, Unifying some known infinite families of combinatorial 3-designs, J. Combin. Theory Ser. A, 118 (2011), 1072-1085. doi: 10.1016/j.jcta.2010.10.007.  Google Scholar

[10]

D. Jungnickel and S. A. Vanstone, On resolvable designs $S_3(3;4,v)$, J. Combin. Theory A, 43 (1986), 334-337. doi: 10.1016/0097-3165(86)90073-7.  Google Scholar

[11]

R. Laue, Resolvable $t$-designs, Des. Codes Cryptogr., 32 (2004), 277-301. doi: 10.1023/B:DESI.0000029230.50742.8f.  Google Scholar

[12]

K. T. Phelps, D. R. Stinson and S. A. Vanstone, The existence of simple $S_3(3,4,v)$, Discrete Math., 77 (1989), 255-258. doi: 10.1016/0012-365X(89)90364-6.  Google Scholar

[13]

S. S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs, Sankhyā A, 25 (1963), 399-402.  Google Scholar

[14]

S. S. Shrikhande and D. Raghavarao, Affine $\alpha$-resolvable incomplete block designs, in Contributions to Statistics, Pergamon Press, 1963, 471-480.  Google Scholar

[15]

D. R. Stinson, C. M. Swanson and T. van Trung, A new look at an old construction: Constructing (simple) 3-designs from resolvable 2-designs, Discrete Math., 325 (2014), 23-31. doi: 10.1016/j.disc.2014.02.009.  Google Scholar

[16]

T. van Trung, Recursive constructions for 3-designs and resolvable 3-designs, J. Statist. Plann. Inference, 95 (2001), 341-358. doi: 10.1016/S0378-3758(00)00308-6.  Google Scholar

[17]

T. van Trung, Construction of 3-designs using parallelism, J. Geom., 67 (2000), 223-235. doi: 10.1007/BF01220313.  Google Scholar

show all references

References:
[1]

R. D. Baker, Partitioning the planes of $AG_{2m}(2)$ into 2-designs, Discr. Math., 15 (1976) 205-211.  Google Scholar

[2]

Z. Baranyai, On the factorization of the complete uniform hypergraph, in Proc. Erdös-Colloquium Keszthely, North-Holland, Amsterdam, 1973, 91-108.  Google Scholar

[3]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge Univ. Press, Cambridge, 1986.  Google Scholar

[4]

J. Bierbrauer, Some friends of Alltop's designs $4-(2^f+1,5,5)$, J. Combin. Math. Combin. Comput., 36 (2001), 43-53.  Google Scholar

[5]

J. Bierbrauer and T. van Trung, Shadow and shade of designs $4-(2^f+1,6,10)$, unpublished manuscript, 1994. Google Scholar

[6]

R. C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhyā, 6 (1942), 105-110.  Google Scholar

[7]

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, 1996. doi: 10.1201/9781420049954.  Google Scholar

[8]

L. H. M. E. Driessen, $t$-designs, $t\geq 3$, Technical Report, Dep. Math., Technische Hogeschool Eindhoven, The Netherlands, 1978. Google Scholar

[9]

M. Jimbo, Y. Kunihara, R. Laue and M. Sawa, Unifying some known infinite families of combinatorial 3-designs, J. Combin. Theory Ser. A, 118 (2011), 1072-1085. doi: 10.1016/j.jcta.2010.10.007.  Google Scholar

[10]

D. Jungnickel and S. A. Vanstone, On resolvable designs $S_3(3;4,v)$, J. Combin. Theory A, 43 (1986), 334-337. doi: 10.1016/0097-3165(86)90073-7.  Google Scholar

[11]

R. Laue, Resolvable $t$-designs, Des. Codes Cryptogr., 32 (2004), 277-301. doi: 10.1023/B:DESI.0000029230.50742.8f.  Google Scholar

[12]

K. T. Phelps, D. R. Stinson and S. A. Vanstone, The existence of simple $S_3(3,4,v)$, Discrete Math., 77 (1989), 255-258. doi: 10.1016/0012-365X(89)90364-6.  Google Scholar

[13]

S. S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs, Sankhyā A, 25 (1963), 399-402.  Google Scholar

[14]

S. S. Shrikhande and D. Raghavarao, Affine $\alpha$-resolvable incomplete block designs, in Contributions to Statistics, Pergamon Press, 1963, 471-480.  Google Scholar

[15]

D. R. Stinson, C. M. Swanson and T. van Trung, A new look at an old construction: Constructing (simple) 3-designs from resolvable 2-designs, Discrete Math., 325 (2014), 23-31. doi: 10.1016/j.disc.2014.02.009.  Google Scholar

[16]

T. van Trung, Recursive constructions for 3-designs and resolvable 3-designs, J. Statist. Plann. Inference, 95 (2001), 341-358. doi: 10.1016/S0378-3758(00)00308-6.  Google Scholar

[17]

T. van Trung, Construction of 3-designs using parallelism, J. Geom., 67 (2000), 223-235. doi: 10.1007/BF01220313.  Google Scholar

[1]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[2]

Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991

[3]

Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445

[4]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

[7]

Guillaume Bal, Jiaming Chen, Anthony B. Davis. Reconstruction of cloud geometry from high-resolution multi-angle images. Inverse Problems & Imaging, 2018, 12 (2) : 261-280. doi: 10.3934/ipi.2018011

[8]

Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations & Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084

[9]

Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning. Inverse Problems & Imaging, 2021, 15 (6) : 1347-1362. doi: 10.3934/ipi.2021017

[10]

Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683

[11]

Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems & Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015

[12]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[13]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[14]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[15]

Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108

[16]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[17]

H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739

[18]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[19]

Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222

[20]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (168)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]